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Summary

Sand waves form a prominent regular pattern in the offshore seabed of sandy shallow
seas such as the North Sea. They can be found at water depths of 10 to 50 m. Their
wavelengths can lead up to 500 m and their heights are typically several metres. The
positions of sand wave crests and troughs slowly change in time. Sand waves are as-
sumed to migrate in the direction of the asymmetry in the water motion, with typical
velocities of up to several metres per year.

Practical relevance Several offshore activities are affected by sand waves. Based on
interviews with managers and engineers from several institutions in the Netherlands,
an overview of the sand wave problems and the ways in which they are handled is
presented. Firstly, these sand waves decrease the least navigable depths and so they
pose a threat to navigation routes and access channels. To avoid unsafe situations,
continuous monitoring and, if necessary, dredging are required. Now, seabed topogra-
phy charts are made using echo soundings. Combining such sounding techniques with
satellite images may lead to more efficient ways to create bathymetry charts. Insight
into the dynamics of sand waves can further reduce monitoring costs. Due to the
movement of sand waves, pipelines and cables may become exposed. This may result
in free spans, which in turn may cause the pipeline to buckle or break. Moreover,
anchors and fishing nets may cause damage to the exposed pipelines and cables. In
addition, exposed objects may be covered by a sand wave, making it difficult to locate
them. Knowledge of sand wave behaviour will enable better management strategies
and provide information supporting the design of offshore activities.

Linear stability analysis Hulscher [1996] investigated sand waves with a linear
stability analysis, assuming they are free instabilities of the seabed-water system. In
such an analysis, we start with a flat seabed over which water is flowing. Next, a
range of wavy bed patterns is applied disturbing the water motion. Subsequently, the
influence of the change in water motion over the seabed is investigated. If there is a
net amount of sediment transported to the top of the bedform, the seabed is unstable
and the bedform is growing. If there is a net flux towards the trough of the bedform,
the seabed is stable. Based on linear theory, the bedform with a wavelength having
the largest growth rate will dominate over the rest of the patterns. The analysis
showed that for a certain range of wavelengths coinciding with observed sand waves,
a net sediment flux exists oriented towards the crest over a tidal cycle, leading to
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their development.
Here, we extended this linear analysis to investigate the physical mechanisms that

may cause sand waves to migrate. We used a morphological model with one horizontal
and one vertical direction (2DV). It contains the 2DV shallow water equations, with
a general bed load formula taking the sediment transport into account. The water
movement is coupled to the seabed evolution equation, based on a mass balance, with
the sediment transport equation.

We introduced an asymmetry in the water motion by choosing a unidirectional
steady current (M0) together with (symmetrical) tidal motion (M2). The results show
sand waves migrating slowly in the direction of the asymmetry of the flow. The rates
of migration and wavelengths found with this linear analysis agree with theoretical
and empirical values reported in the literature. Furthermore, we compared the results
with data of sand waves along a pipeline in the North Sea, showing good agreement.

However, this linear analysis is only valid for sand waves having small amplitudes
and does not say anything about sand waves having larger finite amplitudes.

Numerical simulation To investigate the intermediate term behaviour of sand
waves having finite amplitudes, we developed a numerical simulation model (2DV).
This model allows us to investigate the evolutionary processes of sand waves after
their initial evolution. The simulation model is validated mathematically by com-
paring the results for small amplitude sand waves with the performed linear stability
analysis. The results show that the numerical model is able to reproduce the initial
evolution of sand waves, as was found in the linear stability analysis.

Next, we used the developed simulation model to investigate the behaviour of off-
shore sand waves for finite values of their amplitude. We investigated a unidirectional
steady current and unidirectional block current simulating tidal motion. Initially the
sand waves develop exponentially, as follows from the linear stability analysis. Next,
the growth rate diminishes, resulting in the stabilisation of the sand wave. The sand
waves reach a maximum height of about 10-30% of the average water depth in a
matter of decades. The mechanism causing sand waves to saturate is based on the
increased importance for larger amplitudes of the principle that sediment is trans-
ported easier downhill than uphill. This process counteracts the shear stress at the
seabed transporting sediment upwards towards the crest. The order of magnitudes
found of the time and spatial scales coincide with observations.

For a unidirectional steady flow in an offshore setting we find sand waves with
wavelengths in the order of hundreds of metres when the resistance at the seabed
is relatively large based on linear theory. These sand waves migrate and become
asymmetrical in the horizontal direction, as has been found for dunes in rivers. The
migration rate of the sand waves decreases slightly during their evolution. For a uni-
directional block current we find slightly elongated troughs and coinciding shortened
crests. Similar features are found in data from the North Sea. Finally, the recovery
of dredged sand waves is investigated. Sand waves are able to recover after they are
dredged. The timescale and resulting maximum height depend on the amount of sand
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dredged and where the sand is dumped.

Discussion The here developed models form tools to obtain insight and a framework
to perform further research into the dynamics of sand waves. Moreover, the obtained
knowledge and the models themselves can be used to optimise management strategies
and provide information supporting the design of offshore activities.



14



Samenvatting

Zandgolven vormen een prominent regelmatig patroon in de offshore zeebodem in
ondiepe zeeën zoals de Noordzee. Zij komen voor in waterdieptes van 10 tot 50 m.
Hun golflengtes liggen in de orde van enkele honderden meters en de typische waarden
van hun hoogten zijn enkele meters. De positie van de toppen en dalen van zandgol-
ven veranderen langzaam in de tijd. Verondersteld wordt dat zandgolven migreren in
de richting van de asymmetrie van de waterbeweging, waarbij migratiesnelheden van
enkele meters per jaar bereikt kunnen worden.

Praktische relevantie Verschillende offshore activiteiten ondervinden hinder van
zandgolven. Op basis van interviews met managers en technici van verschillende or-
ganisaties en bedrijven in Nederland wordt een overzicht van de problemen omtrent
zandgolven en de manieren waarop met deze problemen wordt omgegaan gepresen-
teerd. Zo verminderen zandgolven de minimale diepte beschikbaar voor scheepvaart
en vormen daardoor een gevaar voor scheepvaartroutes en vaargeulen. Om gevaar-
lijke situaties te vermijden wordt er continu gemeten en indien noodzakelijk wordt
de waterdiepte vergroot door de toppen van zandgolven te baggeren. Op dit moment
worden kaarten met daarop de ligging van de zeebodem gemaakt met behulp van
echolodingen. Het combineren van zulke lodingtechnieken met satellietbeelden kan
leiden tot meer efficiënte manieren om bathymetrische kaarten te maken. Inzicht in
het dynamische gedrag van zandgolven zal leiden tot verdere reductie van de kosten
verbonden aan het meten van de positie van de zeebodem. Verder kunnen zandgolven,
doordat ze migreren, pijpleidingen en kabels blootleggen. Dit kan resulteren in vrije
overspanningen die op hun beurt het breken of buigen van pijpleidingen tot gevolg
kunnen hebben. Daarnaast kunnen ankers en visnetten de blootliggende kabels en
pijpleidingen beschadigen. Bovendien kunnen objecten op de zeebodem bedekt wor-
den door zandgolven, wat het moeilijk maakt om ze te vinden. Kennis omtrent het
gedrag van zandgolven baant de weg naar betere managementstrategieën en kan ge-
bruikt worden bij het ontwerp van offshore activiteiten.

Lineaire stabiliteitsanalyse Hulscher [1996] heeft zandgolven onderzocht aan de
hand van een lineaire stabiliteitsanalyse, waarbij aangenomen wordt dat zandgolven
vrije instabiliteiten zijn van het zeebodem-water systeem. In een dergelijke analyse
beginnen we met een vlakke zeebodem, waarover water stroomt. Vervolgens worden
er verschillende verstoringen op aangebracht met verschillende golflengtes, die de wa-
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terbeweging verstoren. Daarna wordt de invloed van de veranderde waterbeweging
op de zeebodem onderzocht. Wanneer er een netto hoeveelheid sediment getrans-
porteerd wordt richting de top van de bodemvorm, wordt de zeebodem gezien als
instabiel waardoor de bodemvorm groeit. Wanneer er een netto hoeveelheid sediment
wordt getransporteerd richting het dal van de bodemvorm, wordt de zeebodem gezien
als stabiel. Op basis van de lineaire theorie veronderstellen we dat de bodemvorm
met de golflengte die het hardst groeit zal domineren over de rest van de golflengtes.
Deze verwachten we daarmee aan te treffen in de werkelijkheid. De analyse laat zien
dat voor een scala van golflengtes, die overeenkomen met geobserveerde zandgolven,
er gemiddeld over een getij-periode een netto sediment flux bestaat richting de toppen
van de bodemvormen, wat leidt tot hun ontwikkeling.

Hier hebben we deze lineaire analyse uitgebreid om de fysische mechanismen te
onderzoeken die leiden tot migratie van zandgolven. Hiervoor hebben we gebruik
gemaakt van een morfologisch model met een horizontale en een verticale richt-
ing (2DV). Het omvat de 2DV ondiepwatervergelijkingen en een algemene bodem-
transportformule, die het sedimenttransport beschrijft. De waterbeweging is mid-
dels de sediment transportformule gekoppeld aan de zeebodemevolutievergelijking,
die gebaseerd is op een massabalans.

Wij introduceerden een asymmetrie in de waterbeweging door een unidirectionele
constante stroom (M0) te beschouwen samen met (symmetrische) getijbeweging (M2).
De resultaten laten zien dat de zandgolven langzaam migreren in de richting van de
asymmetrie van de waterbeweging. De gevonden migratiesnelheden en de golflengtes
komen overeen met de theoretische en empirische waarden gepubliceerd in de liter-
atuur. Verder hebben we de resultaten vergeleken met data van zandgolven langs een
pijpleiding in de Noordzee en deze komen goed overeen.

Echter, deze lineaire analyse is slechts geldig voor zandgolven die een kleine am-
plitude hebben ten opzichte van de waterdiepte. De analyse zegt daarom niets over
zandgolven met grotere eindige amplitudes.

Numerieke simulatie Om het middellange termijn gedrag van zandgolven met
eindige amplitudes te beschrijven hebben we een numeriek simulatiemodel ontwikkeld.
Dit model maakt het mogelijk de processen gedurende de evolutie van zandgolven
ook na hun initiële ontstaan te onderzoeken. Het simulatiemodel is mathematisch
gevalideerd door de resultaten te vergelijken voor kleine amplitude zandgolven met
de uitgevoerde lineaire stabiliteitsanalyse. De resultaten laten zien dat het numerieke
simulatiemodel in staat is om de initiële vorming van zandgolven, zoals gevonden
middels de lineaire analyse te reproduceren.

Vervolgens hebben we het ontwikkelde simulatiemodel gebruikt om het gedrag van
offshore zandgolven te onderzoeken voor eindige waarden van hun amplitude. Hierbij
hebben we een unidirectionele constante stroming en een unidirectionele blokstroming
die getijbeweging simuleert onderzocht. Initieel ontwikkelen de zandgolven zich expo-
nentieel, zoals volgt uit de lineaire analyse. Vervolgens vermindert de groeisnelheid
tijdens de evolutie van de zandgolf, wat resulteert in de stabilisatie van de zand-
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golf. De maximale hoogte, die in enkele decennia wordt bereikt, bedraagt 10-30%
van de gemiddelde waterdiepte. Het mechanisme dat er voor zorgt dat zandgolven
stoppen met groeien is gebaseerd op het principe dat zand eenvoudiger bergafwaarts
dan bergopwaarts wordt getransporteerd. Dit proces neutraliseert de bodemschuif-
spanning aan de zeebodem die ervoor zorgt dat sediment bergopwaarts wordt ge-
transporteerd richting de top van de zandgolf. De orde van grootte van de tijd- en
ruimteschalen komen overeen met observaties.

Voor een unidirectionele constante stroming in een offshore omgeving vinden we,
gebaseerd op lineaire theorie, zandgolven met golflengtes in de orde van enkele hon-
derden meters wanneer de weerstand aan de bodem relatief groot is. Deze zand-
golven migreren en worden asymmetrisch in de horizontale richting (analoog aan
rivierduinen). De migratiesnelheid vermindert licht gedurende de evolutie van de
zandgolf. Voor een unidirectionele blokstroming vinden we langgerektere troggen en
daarbij behorende kortere toppen. Soortgelijke patronen zijn gevonden in data van de
Noordzee. Tenslotte is het herstel van zandgolven na baggeractiviteiten bestudeerd.
De simulaties laten zien dat zandgolven in staat zijn om te herstellen nadat ze zijn
gebaggerd. De tijdschaal en resulterende maximum hoogte hangen af van de hoeveel-
heid zand die word gebaggerd en waar het zand wordt gestort.

Discussie De in dit proefschrift ontwikkelde modellen vormen gereedschap om inzicht
te verkrijgen in en een raamwerk om verder onderzoek te verrichten naar het gedrag
van zandgolven. Bovendien kunnen de modellen en het verkregen inzicht gebruikt
worden om de management strategieën te optimaliseren en voorzien in informatie
nodig voor het ontwerpen van offshore activiteiten.
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Chapter 1

Introduction

1.1 General

Shallow seas, such as the North Sea, with water depths in the order of tens of metres,
are often covered with bed features with fascinatingly regular properties. In fact,
several different types of bed features can be distinguished, each with different length
and timescales.

Sand waves — the topic of this thesis — form a prominent bed pattern with
crests spaced about 500 metres apart. They are generally found in areas where sand
is abundant [Fenster et al., 1990]. Their heights can be up to 30% of the water
depth in which they are found, being in the order of 30 metres [Hulscher, 1996] (see
Fig. 1.1, Fig. 1.3 and Fig. 1.5). This means that the relative sand wave height is
very significant. It is assumed that their crests are oriented largely perpendicular to
the prevailing current ([Johnson et al., 1981], [Langhorne, 1981] and [Tobias, 1989]).
Sand waves show spatial as well as temporal variations. These changes in shape
and position of sand waves take place on a time-scale of a couple of years. In fact,
sand waves have been observed to migrate several metres per year ([Allen, 1980a&b],
[Lanckneus and De Moor, 1991] and [Van Maren, 1998]) (see Fig. 1.2).

These sand waves can also coexist with other bed forms. For example, sand waves
can often be found on sandbanks (see Fig. 1.4), such as the Buiten Ratel bank and
the Oostdijk Bank in Belgium (see also Huntley et al. [1993]). Tidal sandbanks are
elongated sand bodies with wavelengths of about five to ten kilometres. Their heights
can lead up to 30 m, which is high compared to the water depth in shallow seas.
Characteristic of tidal sandbanks is that their crests are oriented between 5 and 30◦

anti-clockwise with respect to the principal direction of the water movement. These
sandbanks are believed to evolve on a timescale of hundreds of years ([Huthnance,
1982a&b], [Van Alphen and Damoiseaux, 1989], [De Vriend, 1991] and [Hulscher,
1996]). Furthermore, analytical and numerical studies have shown that they can
migrate at a velocity of about 1 m yr−1 ([Németh, 1998], [Idier and Astruc, 2001],
[Roos et al., 2001] and [Roos and Hulscher, 2002]).

On top of these sand waves, mega-ripples are sometimes found migrating towards
the crests of sand waves [Houthuys, 1990]. Mega-ripples are an order of magnitude
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Figure 1.1: Regular sand waves with wavelengths of about 250 m and wave heights in the order
of 10% of the water depth in the North Sea in front of the Dutch coast near IJmuiden. The
horizontal and vertical scales depict distance in metres. The color scale is based on the depth
below the sea surface. The data is provided by the North Sea Directorate.

smaller, having heights of up to a metre and wavelengths in the order of tens of
metres. Wever and Stender [2000] measured migration rates of 0.5 m day−1, which
equates to almost 200 m yr−1.

A new rhythmic pattern, larger than sand waves, was found by Knaapen et al.
[2002]. This bed pattern has a wavelength of about 1.6 km and a height in the
order of one metre. Based on their length and height, we could place these new bed
forms — named long bed waves — in between the long sandbanks and the smaller
sand waves. Their orientation is about 50 to 60◦ anticlockwise with respect to the
direction of the tidal motion. The mechanism leading to this type of bed pattern is
not yet understood.

1.2 Sand waves and alluvial sand dunes

Sand waves are often compared with alluvial sand dunes. The main difference in
origin is that alluvial dunes are caused by time-independent flow, whereas sand waves
are generated by periodic water motion. In the current literature, the term sand
wave is used for a large variety of bed forms with different shapes and dimensions
at various locations and for several distinct conditions. In this thesis, the aim is to
investigate sand waves in an offshore environment under the effect of time dependent
water motion.
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Figure 1.2: Sand wave migration and pipelines. The upper line denotes the position of the
seabed. The lower line shows the position of the estimated pipeline. The measurements for two
years (1995 and 2000) are shown. We can see that the sand wave is migrating to the left here,
thereby exposing the buried pipeline.

1.3 State-of-the art of modelling sand waves

Johns et al. [1990] and Stansby [1998] discussed unidirectional water movement over
dune-like features with steep slopes. Richards and Taylor [1981] discussed sediment
transport characteristics for more sand wave like bed forms in a unidirectional flow,
with milder slopes compared to river dunes. Idier [2003] investigated sinusoidal sand
waves for various amplitudes with a numerical model for unidirectional flow condi-
tions.

Fredsøe and Deigaard [1992] describe dunes having their equilibrium heights and
wavelengths. Dune migration is described as a function of sediment transport parame-
ters. Therefore, the model does not give insight into the evolutionary process of dunes.
Sand waves under the influence of tidal movement are modelled with this model as
being under the influence of a unidirectional current and only slightly modified by the
tidal movement.

Hulscher [1996], Gerkema [2000] and Komarova and Hulscher [2000] investigated
sand waves by considering the seabed and water motion as a dynamically coupled
system. The results of their analytical studies gave insight into the actual mechanisms
for the initial formation of sand waves. For a certain range of wavelengths, similar to
sand waves, residual circulation cells appear in the water column. These cells induce
a net sediment flux towards the crest of sand waves, leading to their initial evolution.
Furthermore, with these models predictions can be made about the occurrence of
sand waves at certain locations in, for instance, the North Sea [Hulscher and Van
den Brink, 2001]. However, these studies are only valid for infinitely small amplitude
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Figure 1.3: Characteristics of typical offshore bed patterns. The wavelength is defined as the
separation between crests and the wave height is the distance from the trough to the top.
Furthermore, the migration rate is the horizontal displacement of an entire wavelength of a bed
form. The timescale is the period on which significant changes are expected to occur. Based on
the concept of De Vriend [1991].

sand waves and do not give insight into the behaviour of finite amplitude sand waves.
Furthermore, they only describe regular sinusoidal sand waves and migration is not
considered.

Komarova and Newell [2000] investigated the model by Hulscher [1996] combined
with the viscosity parameterisation from Komarova and Hulscher [2000] with a weakly
non-linear analysis. This analysis led to coupled spatial variations of sand waves
and the average bed level, of which the latter seems to have similarities with tidal
sandbanks. This analysis only describes regular bed forms based on the assumption
that the system is weakly non-linear. Furthermore, the model does not describe sand
wave migration.

Knaapen and Hulscher [2002] used an amplitude evolution model based on the
Landau equation, to make predictions of the intermediate term evolution of (dredged)
sand waves. This method, based on measured data, gives first estimates that are
very useful. Morelissen et al. [2002] extended this work by allowing sand waves to
migrate in the model using a modified Landau equation and applied the model in a
pipeline case study. However, insight into the actual physical mechanisms is limited.
Furthermore, large data sets over several years are needed, which are rarely available.
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Figure 1.4: Banc de la Schôle. Sandbank of the coast of Normandy (the long elongated crest),
covered with sand waves (smaller features), after [Bisquay and Ledu, 1999].

1.4 Central research theme of this thesis

The main aim of this thesis is to identify the key practical problems due to sand
waves, and to obtain insight into the intermediate term behaviour with respect to
their migration, evolution and changes in shape. This information — obtained with
a model-oriented approach — can then be used to optimise management strategies.

The main research questions are formulated as follows:

• What are the key practical problems concerning sand waves and their coinciding
time and length scales?

• What processes can cause sand waves to migrate?

• Can the processes determining the initial sand wave formation be simulated by
a numerical model?

• What processes are responsible for the stabilisation of sand wave evolution?

• How do the migration rates and shape of a sand wave change in the intermediate
term?

• What data do we need to validate and apply the developed models in reality?
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Figure 1.5: Location sand waves and other bed patterns such as sandbanks in the North Sea in
front of the Dutch coast, after [Van Alphen and Damoiseaux, 1989].
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1.5 Keywords

Offshore, Sand waves, Tidal current, Steady current, Bed load transport, Stability
analysis, Spectral methods, 2DV, Morphodynamic modelling, Pipelines, Navigational
routes, Cables, Charts, Buried objects.

1.6 Outline of this thesis

Chapter 2 discusses the practical relevance of research into the dynamics of sand
waves. It gives an overview of the variety of problems encountered by companies and
institutions which are involved in offshore seabed morphology. The main topics are
pipelines, navigation and sand extraction. The problems are coupled to the state of
the art literature.

Chapter 3 presents a morphodynamic model for the formation and migration of
sand waves. It is based on the 2DV shallow water equations taking the flow in the
vertical into account. The model describes the initial sand wave evolution by solving
the system with a linear stability analysis. This analysis is valid for infinitely small
amplitude sand waves. Furthermore, it describes sand wave migration due to an
asymmetry in the water motion. This asymmetry is forced by a wind stress applied
at the sea surface or by a pressure gradient, which can be combined with symmetrical
tidal motion. The model results show good agreement with observations.

Chapter 4 shows the structure of the developed non-linear simulation model which
is able to describe the behaviour of finite amplitude sand waves on the intermediate
term. The simulation model is based on the model presented in Chapter 3. However,
the system is solved using a spectral approximation method using Chebyshev poly-
nomials on a non-periodic grid. Furthermore, we applied an implicit time stepping
method. We validated the simulation model mathematically with the help of the
results from the linear stability analysis discussed in Chapter 3. For both the models
we also investigated bed forms induced by a steady current only.

Chapter 5 discusses the behaviour of finite amplitude sand waves using the simu-
lation model discussed in Chapter 4. We focus on the evolution of sand waves, the
saturation mechanisms and their saturation height. A unidirectional current is in-
vestigated, the results of which we compare with observations made in the Gulf of
Cadiz in Spain. Subsequently, we investigate periodic water motion, to investigate
North Sea conditions. Furthermore, the migration rates and changes in shape of sand
waves of finite amplitude are discussed. Finally, the recovery of dredged sand waves
is investigated.

Chapter 6 presents the main conclusions of this thesis, referring to the central re-
search theme stated above.
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Chapter 7 gives some directions for future research.
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Chapter 2

Offshore sand wave dynamics,
engineering problems and
future solutions

Abstract: Offshore activities often encounter large scale sand patterns, such as sand
waves. Sand waves are offshore bed forms occurring at water depths of 10 to 50 m.
Their wavelengths can lead up to 500 m and their heights are typically several metres.
Furthermore, sand waves have been shown to migrate, with typical velocities of up to
metres per year. These dynamic sand waves decrease the least navigable depths and so
they pose a threat to navigation routes and access channels. To avoid unsafe situations,
continuous monitoring and, if necessary, dredging are required. Now, seabed topography
charts are made using echo soundings. Combining such sounding techniques with satellite
images may lead to more efficient ways to create bathymetry charts. Insight into the dy-
namics of sand waves can further reduce monitoring costs. Due to the movement of sand
waves, pipelines and cables may become exposed. This may result in free spans, which in
turn may cause the pipeline to buckle or break. Moreover, anchors and fishing nets may
cause damage to the exposed pipelines and cables. In addition, exposed objects may be
covered by a sand wave, making it difficult to locate them. Recently, new insight into
the migration of sand waves and data-based predictions concerning sand wave amplitude
evolution, have been explored. Despite this progress, a number of questions concerning
sand wave behaviour remain. It is shown that further knowledge of sand wave behaviour
will enable better management strategies and provide information supporting the design
of offshore activities1.

Keywords: sand waves, shelf seas, pipelines, navigation, dredging, monitoring, burial.

1Németh, A.A., Hulscher, S.J.M.H. and De Vriend, H.J., 2003, Offshore sand wave dynamics,
engineering problems and future solutions, Pipeline & Gas Journal, Vol. 230 (4), pp. 67-69.
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Figure 2.1: Observed sand wave occurrence in the southern part of the North Sea (adapted after
Hulscher and Van den Brink [2001]).

2.1 Introduction

On the seabed of The North Sea, and many other shallow shelf seas, a variety of
regular patterns can be found. These have different spatial and temporal scales, as
shown in Table 2.1. These large-scale seabed patterns are often strikingly regular.

Quantity Ripples Sand waves Sandbanks
Wavelength (m) 10−2 102 103

Wave height (m) 10−2 10 30
Timescale minutes years millenia

Table 2.1: Characteristics of typical offshore bed patterns.

Sand waves (Fig. 2.1) are bed forms with wavelengths of about 500 m and heights
up to about 10 m in water depths of about 30 m [Hulscher, 1996]. It is usually assumed
that their crests are oriented perpendicular to the dominant current ([Johnson et al.,
1981], [Langhorne, 1981] and [Tobias, 1989]).

Some decades ago, scientists concluded that the migration rate of sand waves was
quite high (100 m y−1). More recently, migration rate estimates have become lower
(of the order of metres per year). The main reason for this discrepancy is that the
migration rates used to be smaller than the location errors in the measurements.
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Nowadays, positioning has become more precise and the location errors now lie in
the order of magnitude of the distance over which sand waves migrate in a year (also
see Németh et al. [2002]). This margin makes it difficult to accurately determine the
migration rates from data that are only a few years apart.

Sand waves often have asymmetrical shapes. Furthermore, observed asymmetries
may change over a relatively short period of time, e.g. one season. Harris [1989]
reported a reversal of the asymmetry of the sand waves in the Adolphus Channel
of Australia within a period of five months, due to wind-driven currents during the
Monsoon season.

Modelling sand wave dynamics is still far from perfect. Recently, the evolution
of sand waves has been investigated by Knaapen and Hulscher [2002] and Morelis-
sen et al. [2002]. Data assimilation was used to estimate the amplitude evolution.
Based on a set of measurements in time and space, estimates of the evolution of a
sand wave pattern can be made in a certain area. This leads to a locally validated
sand wave behaviour model. This knowledge can be used to develop more efficient
dredging strategies. Despite its success, this empirical method does not include the
full knowledge of sand wave physics. This makes it less suited to reveal the mechanics
of sand wave formation.

Sand waves have a significant effect on the activities taking place in shallow shelf
seas such as the North Sea. This paper will focus on questions about the behaviour
of sand waves in relation to a number of matters: navigational safety, pipelines and
cables, sand extraction and the burial of objects.

Managers and engineers from several institutions in the Netherlands, all dealing
with sand waves from a different point of view, have been interviewed to help address
this question. Backed up with literature, this paper provides an overview of the
sand wave problems and their ways in which they are handled, and suggests possible
improvements based on recent scientific progress.

We will first address the issue of seabed topography charting (Section 2) and
how this could be improved with more knowledge on sand wave dynamics. Next, we
will consider the effects of sand waves on pipelines and cables (Section 3), and on
navigation routes and access channels (Section 4). Sand extraction from sand wave
fields is discussed in Section 5 and Section 6 goes into the issue of sand wave induced
covering and uncovering of objects on the seabed. Finally, we will summarize the
conclusions and discussion (Section 7).

2.2 Seabed topography charts

Navigational charts are probably the most common seabed topography charts. For
safe navigation, it is sufficient if nautical charts give minimum depths. As the seabed is
likely to change over time, it is expected that the accuracy of a chart will decrease with
time. Apart from long-term influences, such as sea level rise and overall sedimentation
or erosion, the combined effects of moving sandbanks, sand waves and mega-ripples
form the major source of change in the least depths.
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Figure 2.2: Echo soundings, satellite imagery and GPS are techniques used to obtain bathymetric
data.

2.2.1 Echo soundings

Nowadays, topographic data is mostly obtained using single-beam echo sounders,
which are attached to ships sailing over the area to be charted. They measure the
depth directly below the device (Fig. 2.2). Recently, multi-beam echo sounders enable
measurements not only directly under the ship, but also in a swath (strip) with a width
of several times the water depth on either side of the ship. Although these systems
are expensive and the processing of the obtained data takes a lot of time [Calkoen
et al., 2001], the results are quite revealing if it comes to the spatial pattern of bed
forms ([Schüttenhelm, 2000] and [Knaapen et al., 2002]).

2.2.2 Satellite images

Remote sensing may be an alternative way of obtaining data on the seabed topog-
raphy. Satellite images are inexpensive and provide snapshots of the sea-surface.
Techniques to translate satellite images into seabed topography are being developed
at this moment [Calkoen et al., 2001].

The ERS-1 (European Remote Sensing) satellite is equipped with a Synthetic
Aperture Radar. The horizontal accuracy of its images is quite low, in the order of
hundreds of metres, due to the lack of good landmarks. If good landmarks (character-
istic features on land) are available, satellite images can be positioned more precisely
in the horizontal. In practice, this means that images taken near the coast are much
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more accurate than images taken farther offshore. Near the coast, the accuracy of the
horizontal positioning can then be as good as ± 25 m.

2.2.3 Bathymetry Assessment System

The BAS (Bathymetry Assessment System) is based on the concept of combining the
above optical sea surface measurements with a translation model of such sea surface
information to seabed topography. This system, which is under development, is meant
to produce charts at much lower costs than before. Theoretically, combining the
satellite images with additional ship soundings and radar images taken from aircraft
can improve the horizontal and vertical accuracy down to the order of metres or less.
Ship soundings will therefore probably remain necessary, to make accurate charts.
One may expect however, that, once the BAS technique is fully developed, it will
reduce the number of soundings considerably, thus reducing the total production
costs of charts.

To obtain seabed-data from satellite images, a translation model is used, based
on an inverse modelling technique. The model consisting of a flow, wave and radar-
backscatter module, use a known chart to create a simulated radar image. Comparing
this simulated image with the observed one and adding data from traditional sound-
ings, ultimately leads to a chart of the seabed topography. Accuracy and costs of
such a chart are reasonably in balance. Soundings are more accurate, but also more
expensive.

Calkoen et al. [2001] observed sand wave patterns on SAR images. Combining
these images with ship soundings and the BAS system allows the study of sand wave
characteristics. However, when exploring this technique in further detail, Middelkoop
[1998] found sand waves with wavelengths significantly larger than usually observed
in that area. The sand wave spacing estimated from the SAR images was in the range
of 900 to 1800 m, whereas sand wave crests in this area are only a few hundred metres
apart. Knaapen et al. [2002] suggest that what is seen on the SAR images are not
sand waves, but another type of seabed feature, due to the interference of bed form
modes.

In conclusion, the use of radar imagery for bathymetric mapping is under investi-
gation. Because the flow-dependence of the relationship between sea-surface patterns
and seabed topography, we may not expect that this technique is accurate enough for
investigating sand wave migration. On the other hand, sand waves influence processes,
such as tidal motion, wave motion and sediment sorting. Insight into sand wave be-
haviour and its relationships with these processes will enable better estimates of the
unknowns in the BAS system and improvement of the underlying model components.

2.3 Pipelines and Cables

The costs of offshore pipelines constitute a large portion of the total costs of developing
a new oil or gas field. Furthermore, pipeline protection takes up a large part of these
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Figure 2.3: Illustration free span pipeline, along a cross section of the seabed, due to the migration
and change in asymmetry of sand waves. The solid line denotes the sand wave in which the
pipeline, represented by the dotted line is buried. Note the exaggeration of the vertical scale
compared to the horizontal scale.

costs [Li and Cheng, 1999].

2.3.1 Free spans

Hundreds of kilometres of pipelines can be found in, for instance, the North Sea.
These pipelines sometimes have to cross a sand wave field. The sand waves can form
a threat if they migrate and expose the pipelines (Fig. 2.3). Free spans may develop,
causing stresses due to gravity. Moreover, the pipelines can start vibrating, due to the
turbulence generated under these free spans. The vibration also causes undesirable
stresses, which may cause the pipeline to bend, break or buckle. Furthermore, once
exposed, a pipeline or cable can be damaged by ship anchors or fishing gear. The
height and migration speed of sand waves are therefore important design parameters
for pipelines and cables. Mega-ripples are too small to create significant over-exertions
and are therefore not considered here.

Free spans may also be caused by changes in sand wave asymmetry, i.e. changes
in the shape of the sand waves, irrespective of their migration. Such a change in
asymmetry may falsely be identified as migration, due to the large measuring errors.
Hence, sand wave migration data in the literature are not always reliable. Such a
change in asymmetry may be caused by a change in the water movement across the
sand wave field.

One way to overcome the sand wave problem is to lay pipelines around sand wave
fields, instead of across them. Often, this is not a very attractive option, because the
sand wave field considered is too large and thus requires a much longer pipeline. On
the other hand, this solution would reduce the costs of monitoring and maintenance,
and decrease the risk.
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The most straightforward solution is to lay the pipeline in a trench through the
sand wave field, so that sand wave migration will be less of a threat. This solution
is effective, but expensive. The main question is: what is the most efficient depth
for a trench to place the pipeline in? This optimal depth depends on factors such as
dredging costs, pipeline construction costs, monitoring costs and risk.

Under certain conditions, the pipeline may have a ’burial potential’ of its own [Bos
et al., 1996]:

• Firstly, tunnel erosion takes place. This process removes sand directly beneath
the pipeline. This leaves a hole in which the pipeline descends on a timescale
of hours to days;

• Next, downstream of the pipeline turbulence is increased, leading to a scour
hole on a timescale of weeks to months. This hole develops on both sides of the
pipeline due to the oscillatory tidal motion. Thus the pipeline gradually sinks
further into the bed. The pipeline can furthermore be equipped with a spoiler
on top, increasing the rate at which the pipeline sinks into the seabed;

• Once the pipeline has sunk far enough, the hole in the seabed locally decelerates
the flow, reducing the transport capacity. This process, called backfilling, will
eventually dominate the scour process and bury the pipeline.

A pipeline laid on top of sand waves is curved, whence it will not sink as easily
into the bed as it would in the case of a flat bed. Moreover, the current velocity varies
along a sand wave, making it harder to predict the burial behaviour of the pipeline.

Knowledge concerning the behaviour of the seabed and its interaction with a
pipeline can help optimise the design such that the total costs are minimized. This
requires predictions of the migration rate of sand waves. Since the pipeline follows the
contours of the bed, we also need to understand the behaviour of the entire profile of
sand waves, not only that of the crests and the troughs. Furthermore, it is necessary
to know to what extent the pipeline works itself into the seabed.

2.3.2 Survey before, during and after use

Several bathymetric surveys are made in projects concerning pipelines:

• First, a reconnaissance survey is made to inventory the seabed profile of the
area where the pipeline is to be laid;

• Next, the chosen route is measured more precisely;

• Before the pipeline is constructed, the route is surveyed once more in order to
have the latest information about the condition of the seabed;

• After the pipeline has been placed, the whole pipeline and its surroundings are
checked;
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• During the entire life span of the pipeline, this area is monitored on a yearly
basis.

Knowledge about sand wave behaviour can reduce the survey effort and thus the
costs. It can furthermore improve the accuracy of the measurements and help their
interpretation. In addition, this knowledge can be used to cut costs after the pipeline
has been decommissioned. Such an object on the seabed may endanger navigation,
fisheries and the marine environment.

2.4 Channels and navigational routes

Ships sailing to, for example, Rotterdam harbour enter through the access channel
leading to the port. Such a channel has to be wide and deep enough for ships to pass
safely. If the channel becomes too shallow, it has to be dredged. Bathymetric infor-
mation is provided to mariners so that they can navigate safely over the Netherlands
Continental Shelf. This is done by publishing nautical charts, depicting the least
depths of the seabed together with information about wrecks and other obstructions.

Both migration and seasonal variations in height or asymmetry of sand waves
change the topography and possibly affect the minimum water depth. This can be
a problem if it happens along these navigation routes and access channels. This is
especially true if the clearance is marginal, such as for super tankers in a harbour
access channel.

The channel plus its surrounding area therefore has to be monitored in order to
decide about where and when sediment has to be extracted. Knowledge about the
mobility of sand waves, which are present in a large part of the North Sea, would
furthermore allow for a larger interval between the surveys needed to guarantee these
least depths.

Instead of using the fictitious chart depth, a model can be used to decide whether
or not to allow a ship into the channel. This will result in a combination of increased
safety and a larger tidal window.

In the Netherlands, the North Sea Directorate and the Royal Navy are interested
in the temporal variations of the seabed within navigation channels. These should
be presented in the form of frequency distributions of the position of the seabed
together with confidence intervals. Furthermore, they want to know the extreme
value statistics of the water depth. Knowledge concerning sand wave dynamics can
form useful information for the required statistical analyses.

2.5 Sand extraction

Sand mining in the North Sea is sometimes performed by dredging the crests of sand
waves (Fig.2.4) (see also [Hoogewoning, 1997] and [Peters, 2000]). Sand extracted
from the seabed can then be used for beach nourishment, land reclamation and the



2.6. Burial of objects 35

Figure 2.4: Sand mining from sand wave crests. (I) shows initial situation of a cross section of a
sand wave pattern, (II) the cross-sectional area to be dredged and (III) the resulting bed profile
after dredging.

construction industry. Furthermore, these sand waves also need to be dredged because
they form a hazard to navigation (see previous section).

It is still unclear how dredging influences a sand wave field. Do the sand waves
regain their original height? If so, how do they recover and how quickly, keeping in
mind the overall sand balance of the sand wave field?

Knowledge about the evolution of sand waves will make it possible to determine
the depth to which they should be dredged if they form a hazard to navigation.
If a sand wave is lowered only marginally, the dredging costs per operation will be
relatively low, but the frequency of these operations are expected to be relatively high.
Moreover, the sand waves will have to be monitored more frequently, in order to make
sure that they do not get higher than acceptable. Knowing the rate at which sand
waves evolve will help determine the most efficient monitoring interval and dredging
strategy. Such a strategy can be set up using the empirical sand wave model developed
by Knaapen and Hulscher [2002]. This model describes the evolution of sand waves
in a certain area, based on measurements in time and space in that area.

2.6 Burial of objects

Objects lying on the seabed can get buried, due to the migration and/or growth of
sand waves (Fig. 2.5). Here one can think of objects such as shipwrecks, mines and
containers possibly containing hazardous materials. Such objects can be buried, after
which they lie dormant on the seabed. However, they might become exposed again,
forming a direct hazard to the environment (for example leakage of chemical waste).
Moreover, these objects can get stuck in fishing gear or inversely.

The time between burial and exposure is called residence time. Not only the
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Figure 2.5: Burial of objects due to migration or a change in asymmetry. The figure shows three
cross-sections of sand waves with objects located in/on the seabed. These objects can be, for
example, chemical waste, mines or shipwrecks.

horizontal displacement of bed forms is important, also the vertical displacement —
self-burial — of the objects plays a role in the residence time.

The residence time of these objects is an important factor in setting up a moni-
toring strategy. There is little point in monitoring an area where the seabed hardly
changes. Knowledge about sand wave behaviour can optimise the monitoring strategy
and thus reduce the costs.

2.7 Discussion and conclusions

Even though sand waves are not directly visible to the naked eye, they pose a threat to
a range of offshore activities. The combination of their timescale (years), length scales
(hundreds of metres) and height (metres) make them bed features to be reckoned with.

The questions asked by the institutions and the industries involved in offshore
activities can be summarized as: ”Under which conditions are sand waves dynamic
(horizontal and vertical movement) and what are the typical spatial and temporal
scales?” At this moment, several aspects of sand waves can be described and explained.
An estimate of the wavelength [Hulscher, 1996] together with the migration rate
[Németh et al., 2002] can be obtained. Furthermore, if in a certain area data are
available over a period of years, the evolution of sand waves in that area can be
described and the position of the seabed in the near future can be predicted ([Knaapen
and Hulscher, 2002] and [Morelissen et al., 2002]). However, the latter technique is
based on data assimilation, so that the results are only valid for the location from
which the data originates. A model based on physical principles describing the non-
linear dynamics is not yet available, but is expected in the near future.

Extra insight into sand wave migration is important to estimate the optimal mon-
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itoring frequency for navigation channels, pipelines and buried objects. Furthermore,
greater insight into the height evolution of sand waves is required, e.g. in order to
determine when and how much should be dredged if sand waves get too high and
form a threat to navigation. The monitoring frequency and the amount of sand to be
dredged can be optimised when knowing the recovery rate of sand waves after they
have been dredged.

Looking at the impact of a large-scale intervention in space and time, such as the
construction of an island in the sea or large-scale windmill parks, the aspects evolution
and migration are both important. This also holds for the further development of sand
wave observations, by the Bathymetry Assessment System combining satellite images
with ship soundings.

A special point of attention is the irregularity of sand waves in a field. Bed level
statistics, and especially extreme value statistics of the seabed, are indispensable
information for dealing with the natural dynamics of the seabed.
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Chapter 3

Sand wave migration, a
stability approach

Abstract: Sand waves form a prominent regular pattern in the offshore seabed of sandy
shallow seas. The positions of sand-wave crests and troughs slowly change in time. Sand
waves are usually assumed to migrate in the direction of the residual current. This paper
considers the physical mechanisms that may cause sand waves to migrate and methods to
quantify the associated migration rates. We carried out a theoretical study based on the
assumption that sand waves evolve as free instabilities of the system. A linear stability
analysis was then performed on a 2DV morphological model describing the interaction
between the vertically varying water motion and an erodible bed in a shallow sea. Here,
we disrupted the basic tidal symmetry by choosing a combination of a steady current (M0)
and a sinusoidal tidal motion (M2) as the basic flow. We allowed for two different physi-
cal mechanisms to generate the steady current: a sea surface wind stress and a pressure
gradient. The results show that similar sand waves develop for both flow conditions and
that these sand waves migrate slowly in the direction of the residual flow. The rates of
migration and wavelengths found in this work agree with theoretical and empirical values
reported in the literature1.

Keywords: stability analysis, sand waves, migration, shelf seas, 2DV.

3.1 Introduction

Large parts of shallow seas, such as the North Sea (Fig. 3.1), are covered with bed
features that are fascinatingly regular. Sand waves form a prominent bed pattern
with a crest spacing of about 500 m. Usually sand waves (also referred to as dunes as

1This chapter has been published as: Németh, A.A., Hulscher, S.J.M.H. and De Vriend, H.J.,
2002, Modelling sand wave migration in shallow shelf seas, Continental Shelf Research, vol. 22/18-19,
pp. 2795-2806. See also the epilogue in paragraph 3.9 which is not part of Németh et al. [2002].
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Figure 3.1: Bathymetry measurements made in the North Sea near the Eurogeul, with horizontal
coordinates specified in metres and a colorbar denoting the sea bed level below mean sea level
(in metres). (Courtesy Rijkswaterstaat, North Sea Directorate; details on measurements and
analysis are given in Knaapen et al. [2002].)

stated by Ashley [1990]) are observed at a water depth in the order of 30 m and their
heights can reach up to several metres. This means that the relative sand wave height
can be significant. The crests are often assumed to be perpendicular to the principal
current ([Johnson et al., 1981], [Langhorne, 1981] and [Tobias, 1989]). Based on a
theoretical analysis, Hulscher [1996] arrived at the conclusion that sand wave crests
may deviate up to 10◦ anti-clockwise from the direction perpendicular to the principal
current.

Observations indicate that these sand waves are dynamic ([Van Maren, 1998],
[Lanckneus and De Moor, 1991] and [Allen, 1980a & b]) and can migrate with speeds
of up to several metres per year. Knowing the spatial and temporal intervals of bed
changes will enhance the overall safety of an area [Németh et al., 2003]:

• The North Sea, for example, contains hundreds of kilometres of pipelines and
cables. A migrating sand wave can uncover cables and make them susceptible
to damage. Furthermore, free spans can develop, which can lead to bending,
vibration, buckling or even breaking of pipelines [Whitehouse et al., 2000];

• Migrating sand waves can also cover mines and chemical waste, which conse-
quently may lie hidden within the seafloor, to become exposed in the future.

Sand wave migration has been studied in situ by e.g. Lanckneus and De Moor
[1991] and Terwindt [1971]. The current method for quantifying migration has serious
limitations, as data tend to be inaccurate (especially older data). Furthermore, often
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only the crests are considered, which ignores the major part of the available informa-
tion. Building long-term data sets and developing objective and accurate methods to
process this data will take a considerable amount of time and effort.

To determine sand wave migration in the field, we need bathymetric data on an
annual basis and an accurate positioning method, which enables absolute interrela-
tion of the positioning of bathymetric data in the horizontal domain. The latter is
an important limiting factor. In recent years, the location accuracy has greatly im-
proved by the use of GPS. Yet, the yearly migration rates are still of the same order
of magnitude as the horizontal positioning error. We are working on an objective
and accurate method, based on bathymetry data over a number of years, to deter-
mine actual migration rates. This will enable us to compare the model results with
actual data. This is crucial for understanding sand wave migration and the processes
involved. More specifically, it will reveal whether the rather simple model discussed
within this paper is sufficient, or whether extensions are needed in order to describe
sand wave migration.

Sand wave migration has been modelled in the past as a direct extension of bed
form dynamics in rivers [Fredsøe and Deigaard, 1992]. However, the residual cur-
rent in a tidal environment is much smaller than the steady currents found in rivers.
Therefore, the migration velocities of tidal sand waves are one to two orders of magni-
tude smaller than the velocities attained by dunes in rivers [Allen, 1980]. Fredsøe and
Deigaard [1992] describe the behaviour of finite-amplitude dunes under a steady cur-
rent. They assume the time-dependency of the flow to be negligible when modelling
sand waves in a tidal environment.

Huthnance [1982a] was the first to look at a system consisting of depth-averaged
tidal flow and an erodible seabed. Within this framework, one can investigate whether
certain regular patterns develop as free instabilities of the system. Unstable modes
comparable to tidal sandbanks were found, whereas smaller modes corresponding to
sand waves were not initiated. Hulscher [1996] extended this work by using a model
allowing for vertical circulations and found formation of sand waves due to a basic
tidal motion that was horizontally uniform and symmetrical in time. Hulscher [1996]
showed that net convergence of sand can occur at the top of the sand waves over
an entire tidal cycle (see also Gerkema [2000] and Komarova and Hulscher [2000]).
In these models, sand waves do not migrate. Hulscher and Van den Brink [2001]
showed the predictive ability of their model for sand wave occurrence. Blondeaux et
al. [1999] introduced forcing due to surface waves on top of the tidal motion. These
wind waves accomplish a net transport of energy and the authors found migration of
sand waves. However, the numerical treatment left many questions about the specific
mechanisms behind migration unanswered. Komarova and Newell [2000] extended a
linear analysis [Komarova and Hulscher, 2000] into the weakly non-linear regime to
investigate the behaviour of finite-amplitude sand waves. The latter model does not
include migration, either.

We can conclude that cause and migration of sand waves are not fully understood
yet. This paper is based upon a model in which sand wave migration by a residual
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Scaling parameters Symbol Default value Dimension
Tidal frequency σ 1.4 · 10−4 s−1

Maximum current velocity U 1 m s−1

Average water depth H 30 m
Stokes layer thickness δ 12 m
Kinematic viscosity Av 1 · 10−2 m2s−1

Gravitational acceleration g 9.8 m s−2

Morphological length scale �m 500 m

Table 3.1: Scaling parameters and variables.

flow is allowed. The paper tests the hypothesis that tidal movement is responsible for
the evolution of sand waves and that steady currents cause these features to migrate.
It also discusses prediction of migration rates.

In section 2 we present a scaling method appropriate for sand waves. Furthermore,
a non-dimensional idealised model is presented. It is based on the two-dimensional
vertical shallow water equations combined with a simple sediment transport equation,
describing bed load transport. The morphological changes are calculated over a longer
timescale than the water movement. This makes it possible to average the bottom
evolution over the tidal period. In section 3 we show the results of a linear stability
analysis. We start with a basic state, which consists of a steady current, on top of
symmetrical tidal movement (M2). This steady current is either induced by a wind
stress applied at the sea surface or by a pressure gradient. The initial behaviour of the
system is then investigated by looking at the feedback of small-amplitude sand waves.
Also, a sensitivity analysis is performed on this linear stability analysis. In section 4
we will discuss the results. The fifth and final section contains the conclusions and
generalisations of the results.

3.2 Description of the analytical model

The model presented in this paper is based on analytical models constructed by
Hulscher [1996], Gerkema [1998], Gerkema [2000] and Komarova and Hulscher [2000].
The Coriolis force only slightly affects sand waves. The behaviour of sand waves can
therefore be described with the help of the two-dimensional vertical (2DV) shallow
water equations.

3.2.1 Scaling

Before a particular choice is made concerning the method of scaling, we will first
summarise the variables and parameters that are assumed to play an important role
in sand wave behaviour (Table 3.1). The values chosen in Table 3.1 represent a typical
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Variable Hulscher Gerkema Kom. & Hulsch. This paper
[1996] [2000] [2000]

u/u∗ U U U U

w/w∗ σH UHk̂ U 1
10U

x/x∗ Uσ−1 k̂−1 δ 10δ
z/z∗ H H δ δ
t/t∗ σ−1 σ−1 σ−1 σ−1

ζ/ζ∗ ULσg−1 . U2g−1 ULσg−1

τb/τb∗ UHσ . AvUδ−1 AvUδ−1

h/h∗ H H H H

Table 3.2: Overview scaling methods (blank means not discussed or not appropriate for compar-
ison). The asterisk ∗ denotes a nondimensional quantity.

North Sea location. Next, typical scaling methods used in the past are summarised in
Table 3.2. The last column of Table 3.2 shows the scaling method used in this paper.

The symbols g and Av indicate the acceleration due to gravity and the constant
vertical eddy viscosity, respectively. Time is represented by t and is scaled with the
tidal frequency represented by σ. This is because tidal movement is assumed to be
the main forcing mechanism of the large-scale bed forms. The velocities in the x- and
z- directions are u, respectively w. The horizontal velocity (x) is scaled with the tidal
velocity amplitude (U). The vertical co-ordinate is denoted by z and h represents the
amplitude of the bottom perturbation. They are both scaled with the Stokes depth
(δ). The thickness of the tidal boundary layer is related to δ defined by:

δ =

√
2Av

σ
. (3.1)

The vertical velocity (w) and the horizontal length scale (x) is scaled with the
Stokes depth. They are furthermore divided and multiplied by a factor 10, respec-
tively, so as to make it possible to scale the variables with physically relevant scales,
combined with a correct order of magnitude. This value is obtained by looking at
the balance between the shear stress and the slope term in the sediment transport
formula [Komarova and Hulscher, 2000]. Gerkema [2000] uses a wave number defined
by:

k̃ =
2π

length sand wave
. (3.2)
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Figure 3.2: Definition sketch of the dimensional model geometry. The horizontal and vertical
direction are denoted by x and z. The water surface is defined by ζ relative the z = 0. The
seabed is defined as h and is relative to the average seabed position, −H.

The water level (z = ζ) is scaled with the length over which the tidal wave varies
(L). τb is the bottom shear stress and scaled analogous to the definition of shear
stress giving:

τb = Av
∂u

∂z

∣∣∣∣
z=−1+h

. (3.3)

3.2.2 Flow model

Starting from the 2DV shallow water equations, neglecting the horizontal viscosity and
using the scaling presented in Table 3.2, last column (for convenience ∗ is dropped)
we arrive at (see Fig. 3.2):

∂u

∂t
+ Ru

∂u

∂x
+ Rw

∂u

∂z
= −R

Lσ

U

∂ζ

∂x
+

∂

∂z

(
Ev

∂u

∂z

)
, (3.4)

∂u

∂x
+

∂w

∂z
= 0, (3.5)

with:

Ev =
Av

δ2σ
, R =

U

10δσ
. (3.6)

Ev can be seen as a measure for the influence of the viscosity on the water move-
ment (by definition the tidal movement) in the water column. R is a function of the
square root of the Reynolds number.
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3.2.3 Boundary conditions and assumptions

The boundaries in the horizontal plane are located infinitely far away. The boundary
conditions at the water surface (z = ζ) are defined as follows:

Lσ210
g

∂ζ

∂t
+

ULσ

gδ
u

∂ζ

∂x
= w, (3.7)

∂u

∂z
= τ̂w, (3.8)

with:

τ̂w =
δ

UAv
τw, (3.9)

in which τw describes the wind induced stress at the sea surface. The horizontal
flow components at the bottom are described with the help of a partial slip condition
(S is the resistance parameter controlling the resistance at the seabed). Models,
using a z-independent eddy viscosity formulation and a no-slip condition tend to
overestimate the bottom shear stress. The shear stress determines directly the amount
of sediment transported. Therefore a partial-slip model with a finite value of the
resistance parameter S is needed in order to produce realistic results. The vertical
velocity component at the bed (z = −1 + h) is described by the kinematic condition:

∂h

∂t
+ u

∂h

∂x
= w, (3.10)

Ev
∂u

∂z
= Ŝu, (3.11)

with:

Ŝ =
S

σδ
. (3.12)

3.2.4 Sediment transport and seabed behaviour

The sediment transport model only describes bed load transport. This mode of trans-
port is assumed to be dominant in offshore tidal regimes. As the velocity distribution
over the water column is calculated explicitly, bed load transport can be modelled
here as a direct function of the bottom shear stress. The following general bed load
formula is used [Komarova and Hulscher, 2000]:

Sb = α

(
AvU

σ

)1+b

|τb|b
[
τb − λ̂

∂h

∂x

]
. (3.13)
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Sb is the volumetric sediment transport. The power of transport, represented by b
is set at 1/2. The proportionality constant α can be computed from Van Rijn [1993].
It is set at a value of about 0.3 m−2 s and incorporates the porosity of the bed. The
scale factor for the bed slope mechanism is λ. It takes into account that sand is
transported more easily downward than upward. The default value is set at 0.0085
in this study [Komarova and Hulscher, 2000]. The effects of the critical shear stress
on the slope effects are incorporated herein.

The net inflow of sediment is assumed to be zero. This results in the following
sediment balance, which couples the flow model Eqns. (3.4)-(3.12) with the sediment
transport model Eq. (3.13) (see Fig. 3.2):

∂h

∂Tm
= − ∂

∂x

(
|τb|b

[
τb − λ̂

∂h

∂x

])
, (3.14)

in which:

λ̂ =
δ

10AvU
λ, Tm = α̂t, α̂ =

α

10δ2σ

(
AvU

δ

)1+b

≡ 1
σTlong

. (3.15)

The bed level will hardly vary on a tidal timescale. The behaviour of the bed is
therefore evaluated on a larger time-scale by considering tidally averaged values for
the sediment transport.

3.3 Linear stability analysis

The solution of the problem can formally be presented by the vector ψ = (u,w, ζ, h).
The sand wave amplitude to water depth ratio is denoted by ε. Starting from an
exact solution of the problem, a certain basic state ψ0 can be perturbed by a small
amplitude (ε � 1) perturbation. The solution can be expanded as follows:

ψ = ψ0 + εψ1 + ε2ψ2 + ε3ψ3 + . . . (3.16)

For ε < 1 and ||ψi|| = O(1), the successive terms decrease in magnitude. This
means that the one but largest contribution is fully given by the term ψ1 being linear
in ε. Therefore, the instability of the basic state ψ0 can be tested by determining the
initial behaviour of ψ1. Amplification of ψ1 in time implies that the basic state is
unstable and decay means stability.
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3.3.1 Basic state

The basic state describes a tidal current together with a steady current over a flat
bottom (horizontally uniform flow). The basic vertical velocity turns out to be equal
to zero, i.e. w0 = 0. The horizontal basic flow, u0, satisfies the following equation:

∂u0

∂t
= −R

Lσ

U

∂ζ0

∂x
+

∂

∂z

(
Ev

∂u0

∂z

)
. (3.17)

The boundary condition at the free water surface z = 0 is given by:

∂u0

∂x
= τw, (3.18)

and the boundary conditions at the seabed z = −1:

Ev
∂u0

∂z
= Ŝu0, w0 = 0. (3.19)

The velocity in the horizontal direction consists firstly of a periodic part, which
represents M2 tidal motion. The periodic part of the water motion has a depth-
averaged amplitude of 1ms−1 [Hulscher, 1996]. Secondly, we furthermore disrupt the
symmetry by adding a steady current (ur(z)). The basic state can now be formulated
as follows:

u0 = βur(z) + (1 − β) {us(z) sin t + uc(z) cos t} , (3.20)

in which β enables us to vary the ratio of the steady part and the periodic part, in
such a way that the maximum velocity always coincides with the velocity used to scale
the system. Two possible types of steady flow components have been investigated.
These are (I) a wind driven current and (II) a current induced by a pressure gradient.
The vertical structure for each of these cases follows from Eq. (3.17):

I : ur = τ̂w

(
1 +

Ev

S
+ z

)
(3.21)

II : ur = P

(
1
2
z2 − Ev

S
− 1

2

)
, with P =

L

10δEv
ζ. (3.22)

Note that in the wind driven case (I), the shear stress at the bottom is equal to
the wind stress at the sea surface. This is only the case if the wind-driven current
encounters no obstacles.
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3.3.2 Perturbed state

The stability of the basic state can be tested by determining the initial behaviour
of the first order perturbation. Using Eq. (3.16) and using the basic state solution
Eqns. (3.17)-(3.19) gives:

∂u1

∂t
+ Ru0

∂u1

∂x
+ Rw1

∂u0

∂z
= −R

Lσ

U

∂ζ1

∂x
+

∂

∂z

(
Ev

∂u1

∂z

)
, (3.23)

∂u1

∂x
+

∂w1

∂z
= 0. (3.24)

A Taylor expansion in the small parameter ε enables us to transfer the free surface
boundary condition from z = ζ to z = 0 and the bottom boundary condition from
z = −1 + h to z = −1. The boundary conditions at the free surface are then given
by:

∂u1

∂z
= w1, (3.25)

and at the bottom:

∂u1

∂z
=

Ŝ

Ev
u1 + h1

Ŝ

Ev

∂u0

∂z
− h1

∂2u0

∂z2
. (3.26)

The unknowns are Fourier transformed as follows with ψ1 = (u1, w1, ζ1, h1):

ψ1 =
∫

ψ̃(t)e−ikxdk + c.c. (3.27)

in which c.c. means complex conjugate and k is the wave number of the wavy bottom
perturbation. Harmonic truncation in time is applied. This means that the perturba-
tion is restricted to a finite number of tidal components. In the case of a unidirectional
tidal flow, the following truncation will contain the dominant physical processes:

ûtrunc(z, t) = h̃ [ia0(z) + as(z) sin t + ac(z) cos t] , (3.28)
ŵtrunc(z, t) = h̃ [c0(z) + ics(z) sin t + icc(z) cos t] , (3.29)

ζ̂trunc(z, t) = h̃ [d0 + ids sin t + idc cos t] . (3.30)

The vertical structure (functions as(z), etc.)) can now be solved numerically.
Subsequently, the shear stress can be calculated and imported into the bottom evo-
lution equation. The evolution of the seabed can best be described by averaging the
sediment fluxes over the tidal period, because the seabed will hardly vary on a tidal
timescale. The solution for the bottom evolution equation reads:

h̃ = h0eωrTm cos (kx − ωiTm) . (3.31)
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Figure 3.3: Growth characteristics as a function of the wave number k: (a) growth rate ωr and
(b) angular frequency ωi, both for three cases: M2 (solid), M2 plus wind (dashed) and M2 plus
pressure gradient (dotted).

This expression represents a progressive wave, the amplitude of which changes in
time, starting from the initial value h0. The complex growth rate ω is:

ω = ωr + iωi = −k(b + 1)a′
0(−1)

〈|τb0|b
〉 − λ̂k2

〈|τb0|b
〉

−ik(b + 1)
[
a′

s(−1)
〈|τb0|b sin t

〉
+ a′

c(−1)
〈|τb0|b cos t

〉]
,(3.32)

in which the brackets denote the tidal average and τb0 the bottom stress of the
basic flow. With this equation the initial response of the bed to the introduced
perturbation can be investigated.

3.4 Results

The real part of Eq. (3.32) (ωr) represents the dimensionless initial growth rate of the
sand waves. If the steady current βur equals zero, the water motion is symmetric. In
Figs. 3.3 (a) and (b) the results are shown for a tidal current with a depth-averaged
amplitude of 1ms−1 (M2, β = 0). The morphological timescale (Tm) is about 6 years
(Eq. (3.15)). This is in line with Hulscher et al. [2000] who investigated data sets and
found a timescale of 8 years. As was found from previous research ([Gerkema, 2000],
[Hulscher, 1996], [Komarova and Hulscher, 2000] and [Blondeaux et al., 1999]) positive
growth rates appear for a range of wave numbers k (ωr > 0). The wavelength having
the largest growth rate is the mode we expect to find in nature. The dimensional
wavelength follows from:
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Figure 3.4: Orientation (angle denoted by α) residual current (M0) with respect to tidal move-
ment (M2) (crests sand wave oriented perpendicular with respect to the principal current, which
is for a typical North Sea location the tidal motion).

Lsw =
20π

k

√
2Av

σ
. (3.33)

In this case the fastest growing mode has a wave number k = 1.25 (see Fig. 3.3
(a)), which according to Table 3.2, corresponds with a wavelength of about 600 m.
In this case, no migration is found.

The phase speed of the sand waves is described by ωi/k in which ωi is the imagi-
nary part of Eq. (3.32). These phase speeds are due to the asymmetry in the water
motion. The magnitude depends on the nature of the steady part (I or II) and on
the magnitude of the asymmetry in the water movement. Fig. 3.3 (a) and (b) show
the results for a depth-averaged residual current of 0.1 m s−1 (M0) superimposed on
a tidal current of 0.9 m s−1 (M2) (β = 0.1).

The fastest growing modes have wavelengths in the order of 700 m in both cases
(Fig. 3.3 (a)). The angular frequency in case of a net current generated by a pres-
sure gradient and in case of a wind-driven current. The sand waves migrate at a
dimensionless rate ωi/k, in its dimensional form:

Vsw =
10ωi

2πTm

√
2Av

σ
. (3.34)

The pressure gradient (case II) induces larger migration rates than a wind stress
(case I). For the fastest growing modes, the migration rates for case I become 3 and
for case II 10 m yr−1. These can be derived from Fig. 3.3 (b) and Eq. 3.34.

In order to assess the sensitivity to the type of driving force of the net current,
we combined the velocity profile of case I with the bed shear stress of case II. The
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Figure 3.5: Properties of the fastest growing modes a function of Ŝ/Ev: (a) wave number k,
(b) growth rate ωr and (c) angular frequency ωi.

result was a growth and migration rate close to that of case II. This shows that the
bed shear stress is the dominant factor in linear sand wave dynamics. By implication,
the parameterisation of the velocity profile is of a lesser importance.

The order of magnitude is similar to values found in the literature ([Van Maren,
1998], [Lanckneus and De Moor, 1991] and [Allen, 1980]). It should be noted that in-
clusion of higher harmonic modes (M4, M6, etc.) will give contributions to Eq. (3.32)
which are not taken into account here. However, for most locations the M0 is as-
sumed to give the largest contribution to the tidal asymmetry, so that it is likely
to also play the most important role in sand wave migration. Further investigation,
which incorporate higher harmonics, should test these expectations.

This model is likely to overestimate migration rates. The residual current is time-
invariant, i.e. it always has the same strength and orientation. It is necessarily
oriented perpendicular to the sand wave crests, due to the exclusion of the second
horizontal dimension. If a different direction is incorporated, the net current re-
sponsible for migration, would have been the component perpendicular to the crests
(Fig. 3.4). Furthermore, ur has to be interpreted as a typical yearly averaged cur-
rent1. In nature, this current will gradually change in magnitude and in orientation
in time. The latter means that the tidal and the residual current will have differ-
ent orientations, again. The effective residual current for sand wave migration will
therefore be smaller than the magnitude of the residual current actually observe.

1According to Dronkers et al. [1990], the average subsurface residual current in the southern
North Sea is directed northward and has a magnitude in the order of 0.05 m s−1 (see also Van der
Molen [2000]).
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Figure 3.6: Timescale as a function of the eddy viscosity Av. The timescale increases for larger
values of the eddy viscosity.

3.5 Sensitivity analysis

Now we perform a sensitivity analysis for the resistance parameter (at the seabed),
the viscosity and the slope parameter. For any combination of these parameters,
the fastest growing mode can be determined. The analysis is performed for a depth-
averaged residual current of 0.1 m s−1 (M0), induced by a pressure gradient (case II),
on top of tidal movement of 0.9 m s−1 (M2) (β = 0.1).

Figs. 3.5 (a) and (b) show the wave number of the fastest growing modes and the
corresponding growth rate, respectively, both as a function of the dimensionless resis-
tance parameter divided by Ev. If the resistance at the seabed increases, the critical
wave number and the growth rate increases (smaller wavelengths are found). The
opposite holds for an increase in viscosity. The range on the horizontal axis between
0.03 and 0.08 coincides with wavelengths between 3000 and 500 m. We have to keep in
mind that the dimensional wavelength for equal dimensionless wave numbers changes
for different values of the viscosity. This is due to the use of the Stokes layer thickness
instead of the water depth when scaling the spatial co-ordinates (Table 3.2). If the
viscosity increases, the Stokes layer thickness increases also, thus changing the length
scale. Furthermore, the timescale increases with the eddy viscosity (Eq. (3.15)). This
means that the differences in the actual dimensional growth rates will be smaller,
although still present (Fig. 3.6).

Fig. 3.5 (c) shows the angular frequency of the fastest growing mode. This quantity
becomes smaller for longer wavelengths. If the value of the resistance parameter is
increased, the angular frequency will increases too. For the smaller values of the
viscosity, this relation is stronger. This is due to the fact that for these smaller values
of the viscosity the wavelength of the fastest growing mode is much smaller.
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Figure 3.7: Properties of the fastest growing mode as a function of the slip parameter S for
different values of the eddy viscosity Av: (a) wavelength (m) and (b) migration rate (m yr−1).

If we plot the wavelength against Av and S we see that if we increase the viscosity
or decrease the resistance parameter, the wavelength of the fastest growing mode will
increase (Fig. 3.7 (a)). If we look at the migration rates per year for the same range
of Av and S, we find a very strong dependency on the resistance parameter (Fig. 3.7
(b)).

The slope term does not have a direct effect on the rate of migration, but the slope
term does play an important role in determining the fastest growing mode. The slope
term dampens the smaller bed forms (Eq. (3.14)). Therefore, if we increase this term,
the wave number of the fastest growing mode will become smaller. This corresponds
with a larger wavelength having a smaller angular frequency. This means that the
expected migration rate is indirectly decreased due to a different fastest growing mode.

In addition to the sensitivity analysis above, we have investigated the effect of
varying the magnitude of the net current. It appeared that when β is varied, the
default values of the resistance parameter and the slope parameter should be recon-
sidered. If the bed resistance is too small, very long bed forms will emerge if the ratio
tidal movement/steady current decreases. If we increase the resistance by only a fac-
tor two, sand wave-like bed forms are found again. This can be see from Figs. 3.8 (a)
and (b) showing the wave numbers and phase shifts for the fastest growing modes for
different values of the resistance parameter which are unstable. A similar sensitivity
was found for the slope parameter (λ).

Furthermore, the real part of omega is hardly influenced by the addition of the
residual current. The wave number of the fastest growing mode is almost the same as
in the case of only symmetrical tidal movement. Gerkema [2000] showed that value for
the growth rate and for the wavelength can vary 28 and 13 percent respectively due to
harmonic truncation. Due to the structure of the problem we expect similar deviations
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Figure 3.8: Properties of the fastest growing mode as a function of β for different values of the
resistance parameter: S = 0.01 (solid), S = 0.008 (dashed) and S = 0.005 (dotted): (a) angular
frequency ωi and (b) wave number k.

for the model presented in this paper, which do not affect the main conclusions.
In the expression of the imaginary part of omega, the wave number can also be

found. Since this wave number of the fastest growing does not vary a lot due to the
inclusion of a residual current, we do not expect a large difference in the migration
rate with respect to the dependency on the wave number.

3.6 Conclusions and Discussion

The foregoing analysis shows that a steady current inducing an asymmetry in the basic
state can cause migration of sand waves. The order of magnitude for the migration
rates and wavelengths found (5−10myr−1 and 600 m, respectively) are in agreement
with values reported in the literature. The wavelengths are only slightly influenced
by the presence of a steady current superimposed on the M2 tidal motion.

The steady current can be generated by (I) a wind stress and (II) a pressure
gradient causing different magnitudes of the shear stress at the seabed, which in turn
causes differences in the migration rate in the order of a factor 3. The predicted
wavelength is about the same in either case.

Therefore, tidal currents are the main mechanism responsible for the formation of
sand waves in this model. The inclusion of a steady current has only minor effects on
the formation process. Furthermore, the steady current proved to cause sand wave
migration.

Moreover, we found that the asymmetry in the basic bed shear stress is the most
important factor in determining the migration of sand waves, the parameterisation of
the velocity profile is of lesser importance. This implies that estimates for sand wave
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migration rates can be obtained directly from their basic tidal bed shear stress (τb0)
which probably also yields for tidal asymmetries caused by higher harmonics e.g. M4

(see also Soulsby [1990]) which are not explicitly taken into account here.
We also found a strong dependency of the results, while varying the value of β

in Eq. (3.20), on the value of the resistance and slope parameter (see also Hulscher
[1996] and Gerkema [2000]).
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3.8 Appendix: Solution vertical flow structure

The solution of the linear stability problem describes the flow field as a function of
the position in the vertical. The equations describing the perturbed tidal and steady
current components are:

Eva′′
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2
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c′0 = −ka0, (3.38)
c′s = kas, (3.39)
c′c = kac. (3.40)

Furthermore, the following boundary conditions at the free surface are needed:

∂a0
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=

∂as

∂z
=
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= 0, (3.41)

c0 = cs = cc = 0. (3.42)

And at the bed we find:
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Ŝ

Ev
{ac + u′

c} − u′′
c , (3.45)
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cs = −kus, (3.47)
cc = −kuc. (3.48)
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3.9 Epilogue: Sand wave migration along a pipeline
in the North Sea

This epilogue (not part of Németh et al. [2002]) discusses the application of the
stability analysis on a field of sand waves located in the North Sea. Hereby, we will
investigate if we can estimate the wavelength and migration rate of the sand waves
in the data set, based on the parameters available of the environment1.

Figure 3.9: Location of the bathymetric data along a pipeline in the North Sea.

3.9.1 Bathymetric surveys along a North Sea pipeline

The bathymetric data used in this epilogue, have been digitised from pipeline align-
ment sheets. The data used here comes from one section of about 9 km of a pipeline in
the southern Bight of the North Sea. Hereby, the crests of the sand waves lie almost

1Data analysis based on: Morelissen, R., Hulscher, S.J.M.H., Knaapen, M.A.F., Németh, A.A.
and Bijker, R., 2003, Interacting sand waves and pipelines: a data-assimilation based mathematical
model, Coastal Engineering, in press.
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Figure 3.10: The original data (light solid line) and the mean bottom profile (dark dotted line)
found using the low pass filter. The bed level on the vertical axis and the position along the
pipeline on the horizontal axis are in metres. Short bed level undulations can be seen on the
larger sand waves. These undulations are mega-ripples superimposed on the sand waves (Table
2.1). These mega-ripples fall outside the scope of this thesis. (Data courtesy of Clyde Petroleum
Exploratie, Holland Offshore Consulting and the State Supervision of Mines.)

perpendicular to the pipeline and the principal direction of the current. Fig. 3.9 gives
a rough indication of the position of this data set. Five surveys were available and
carried out in 1995, 1996, 1998, 1999 and 2000, giving a total time span of 6 years.

The position of a pipeline is very stable in general. Therefore, it provides a
reliable reference position for the bathymetric measurements on charts. This reference
position is important to investigate sand wave migration. The position of the pipeline
itself is given by only a couple of measurements. The total error of the horizontal
positioning is less then ± 10 m. The total error of the vertical position of the seabed
lies in the order of 0.2 m. Both the horizontal and vertical error are equally divided
over measurement error and digitisation error.

3.9.2 Data pre-processing

To compare the measured data with results obtained with the sand wave model, the
mean bed profile has been derived from the data set using a low-pass filter based on
a Hanning window. Subsequently, this mean bottom profile was subtracted from the
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Figure 3.11: Resulting sand waves after subtraction of the mean bottom profile. The deviation
from the mean depth on the vertical axis and the position along the pipeline on the horizontal
axis are in metres.

original data to isolate the sand wave profile. Figs. 3.10 and 3.11 show the data before
and after the filtering.

Looking at Fig. 3.11, the wavelengths of the sand waves found lie in the order of 400
m and their average height is about 3 m (10 % of the average water depth). However,
in reality these are slightly smaller since the crests of the sand waves are not oriented
perpendicular with respect to the pipeline, but at a small angle. The maximum sand
wave height in the domain is 6 m (20 % of the average water depth). Furthermore, they
are asymmetrical oriented to the North, coinciding with the residual current present
in the Southern North Sea [Dronkers et al., 1990] and with the general direction of
movement of the sand waves according to Houbolt [1968]. This coincides further
with the found migration of the sand waves in the northerly direction (to the left
in Figs. 3.10 and 3.11). The migration rate of the sand waves was assessed by a
comparison of successive data sets and varies over the domain. Between 0 & 1000 m
and 7000 & 8000 m the migration rate is about 10 m yr−1. Between 2000 and 3000 m,
where the sand waves are less high compared to the rest of the data set, the migration
rate found is about 20 m yr−1. This is in agreement with other values reported in the
literature ([Van Maren, 1998], [Lanckneus and De Moor, 1991] and [Allen, 1980b]).
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3.9.3 Application stability analysis

We investigated with the model described in this chapter periodic water motion with
a depth-averaged amplitude of 0.9 m s−1 together with a steady current of 0.1 m s−1,
based on a pressure gradient, as an estimate of the flow conditions present at the
location of the data set (Fig. 3.9). Furthermore, the sediment diameter is about 2.4
10−4 m [Baptist et al., 2001], giving us a value for λ (Eq. 4.3) following Komarova
and Hulscher [2002] of about 0.00375, which is smaller than the value previously used.
Hereby, the values of the other parameters needed to determine λ are kept the same.
The average water depth is estimated to be about 28 m.
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Figure 3.12: Properties of the fastest growing mode as a function of the slip parameter S (m
s−1) for different values of the eddy viscosity Av (m2 s−1): (a) wavelength (m) and (b) migration
rate (m yr−1). A typical North Sea location has a value for the slip parameter S of about 0.008
m s−1 and an eddy viscosity Av of 0.01 m2 s−1.

3.9.4 Results stability analysis

The properties of the FGM as a function of the slip parameter S for different values
of the eddy viscosity Av can be found in Fig. 3.12. These are the wavelength of the
FGM and its coinciding migration rate. A typical North Sea location has a value of
the slip parameter S of about 0.006-0.008 m s−1 and an eddy viscosity Av of about
0.01 m2s−1. This gives us according to the linear stability analysis a wavelength in
the order of 400 m and a coinciding migration rate of about 20 m yr−1.

In Chapter 5 of this thesis, while investigating the finite amplitude behaviour of
sand waves, we will furthermore see that the migration rate diminishes only slightly
during the evolution of sand waves. The migration rate of a fully-grown sand wave is
about 20% less than that of an infinitely small sand wave. This gives us an estimate
of the migration rate of about 16 m yr−1.
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3.9.5 Conclusions

The results from the stability analysis coincide very well with the observations made
along the pipeline. Although the wavelengths are slightly too long. This deviation
is allowed, considering the simplifications in the model, the errors in the estimated
values of the different parameters and the errors in the data set.

To perform similar studies and further validate this and other models giving con-
fidence in their predictions, we need more data. Like the data set used here, this data
should span a couple of years with an interval of about a year. This to enable the
identification of sand wave migration. The horizontal positioning error in the data
should be less than the migration over the measurement period. Rigid structures
like pipelines or other landmarks provide us with information to obtain the required
accuracy of the horizontal position of the data.

This model forms a step in the direction of estimating sand wave migration when
no time series of bathymetric data is available during the planning of a new pipeline,
or the optimisation of the monitoring and dredging strategy of navigational routes
(See also Le Bot et al. [2000] and Le Bot [2001]). However, we then need data
on the seabed composition and velocity profiles in the water column to determine
the roughness at the seabed (Eq. (3.11)), the magnitude of the slope effect and the
other parameters in the sediment transport formulation (Eq. (3.13)). Furthermore, we
need depth-averaged values of the (at least) yearly averaged current velocities (These
depth-averaged values can come from large scale numerical models).

3.10 Acknowledgements
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Chapter 4

A sand wave simulation model

Abstract: Sand waves form a prominent regular pattern in the offshore seabeds of sandy
shallow seas. A two-dimensional vertical (2DV) flow and morphological simulation model
describing the behaviour of these sand waves has been developed. The simulation model
contains the 2DV shallow water equations, with a free water surface and a general bed
load formula. The water movement is coupled to the sediment transport equation with
a seabed evolution equation. The domain is non-periodic in both directions. The spatial
discretisation is performed by a spectral method based on Chebyshev polynomials. A fully
implicit method is chosen for the discretisation in time. Firstly, we validate the simulation
model mathematically by reproducing the results obtained using a linear stability analysis
[Németh et al., 2002] for infinitely small sand waves. Hereby, we investigate a steady
current situation induced by a wind stress applied at the sea surface. The bed forms
we find have wavelengths in the order of hundreds of metres when the resistance at the
seabed is relatively large. The results show that it is possible to model the initial evolution
of sand waves with a numerical simulation model. This chapter forms a part of a study
to investigate the intermediate term behaviour of sand waves1.

Keywords: stability analysis, numerical analysis, spectral method, sand waves, gen-
eration, shelf seas, 2DV.

4.1 Introduction

Large parts of shallow seas — such as the North Sea — are covered with bed features
having a variety of spatial dimensions (Fig. 4.1). Sand waves form a prominent bed
pattern with a crest to crest spacing of hundreds of metres. Sand waves are observed at
water depths in the order of 30 m and their heights can reach up to several metres. The
crests are often assumed oriented perpendicularly to the principal current ([Johnson

1Extended after: Németh, A.A., Hulscher, S.J.M.H. and Van Damme, R.M.J., 2001, Numerical
simulation of sand wave evolution in shallow shelf seas, Proceedings of the fourth conference on
coastal dynamics, Lund, Sweden, editors Hanson, H. & Larson, M., pp. 1048-1057.
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Figure 4.1: Cross-section of sand waves based on bathymetry measurements made in the North
Sea (Courtesy Clyde Petroleum Exploratie; Holland Offshore Consulting; State Supervision of
Mines, 2000).

et al., 1981] and [Langhorne, 1981]). Based on a theoretical analysis, Hulscher [1996]
showed that sand wave crests may deviate up to 10o anti-clockwise perpendicularly
from the principal direction of the current.

An analysis of the sand market [Peters, 2000] showed that a shortage of sand is
expected in the future in the Netherlands. The crests of sand waves are assumed to
have the best composition for use in concrete. Knaapen and Hulscher [2002] showed
that when a sand wave is dredged, it is able to recover in only a matter of years.
Furthermore, the behaviour of sand waves plays an important role in the selection
of areas for large-scale sand extraction pits and their design. The influence of a
pit or artificial island on its surrounding bed topography (including sand waves) is
still unclear. Besides, the presence of sand waves changes the hydrodynamics and
therefore the recolonization possibilities of benthic fauna [Stolk, 2000]. Observations
suggest that sand waves are dynamic ([Allen, 1980b] and [Lanckneus et al., 1991])
and may migrate with speeds of up to several metres per year. Therefore, insight
into the behaviour of these sand waves is crucial to enable cost-effective management
practices.

Huthnance [1982] was the first to look at a system consisting of depth-averaged
tidal flow and an erodible seabed. Within this framework, it is possible to inves-
tigate whether certain regular patterns develop as free instabilities of the system.
Unstable modes comparable to tidal sandbanks were found, whereas smaller modes
corresponding to sand waves were not initiated. This work was extended by Hulscher
[1996] using a model allowing for vertical circulations and found formation of sand
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Figure 4.2: Residual current directed upwards towards the crest near the seabed over a tidal cycle
[Hulscher, 1996].

waves based on a horizontally averaged symmetrical tidal motion. The work showed
that net convergence of sand can occur at the top of the sand waves over an entire
tidal cycle, as shown in Fig. 4.2 (see also Gerkema [2000] and Komarova and Hulscher
[2000]). Németh et al. [2002] extended the previous work by including an asymmetric
basic flow, inducing sand wave migration.

A consequence of linear stability analysis is that their validity is limited to small-
amplitude sand waves. However, this is far from the final aim, which is understanding
the entire evolutionary process of sand wave formation. Komarova and Newell [2000]
have extended the linear analysis by Komarova and Hulscher [2000] into the weakly
non-linear regime for investigation of the behaviour of finite-amplitude idealised sand
waves. However, migration is not discussed. Fredsøe and Deigaard [1992] describe
the behaviour of existing finite-amplitude dunes under a steady current. They assume
the time-dependence of the flow to be negligible when modelling sand waves in a tidal
environment. Johns et al. [1990] discuss the finite amplitude behaviour of bed forms
similar to sand waves under a steady current.

Numerical methods are a tool to overcome the limitations of a linear analysis
and enable the study of the non-linear behaviour of these bed sand waves. This
possibly enables the description of the entire evolutionary process of sand waves and
might give a clue to the most important mechanisms, determining the growth and
stabilisation of sand waves. Furthermore, migration and irregular sand wave shapes
can be investigated.

Within this chapter, we focus on the first step, which is to reproduce the results
obtained using a linear stability analysis for small amplitude sand waves [Németh
et al., 2000] (from here on referred to as ”stability analysis”) with a new numerical
simulation model (from here on referred to as ”simulation model”). Hereby, we also
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Parameters Symbol Default value Dimension
Depth-averaged value velocity U 1 m s−1

Average water depth H 30 m
Kinematic eddy viscosity Av 3 · 10−2 m2s−1

Resistance parameter S 1 · 10−2 m s−1

Gravitational acceleration g 9.8 m s−2

Power of transport b 5 · 10−1 −
Proportionality constant α 3 · 10−1 m−2 s
Bed slope factor λ1 2 · 10−3 m2 s−2

Bed slope factor λ2 3.33 −
Sand wave length Lsw 600 m
Number of sand waves Nsw 3 −

Table 4.1: Default values and dimensions of the parameters and variables existing in the system.

focus on sand waves in a unidirectional steady current only.
Firstly, we present the mathematical formulation of the sand wave simulation

model. It is based on the two-dimensional vertical shallow water equations combined
with a simple sediment transport equation, describing bed load transport. Next,
the numerical set-up pursued in this work is discussed. We present the coordinate
transformation method, the spatial and temporal discretisation. Subsequently, we
validate the simulation model mathematically by comparing it with the linear stability
analysis discussed in Chapter 3. In the final section, we present the discussion and
conclusions.

4.2 2DV morphological model

4.2.1 Flow model

The simulation model presented in this chapter is based on Németh et al. [2002].
It is known that the Coriolis force only slightly affects sand waves [Hulscher, 1996].
Therefore, the behaviour of sand waves can be described with the help of the two-
dimensional vertical (2DV) model. We start from the 2DV shallow water equations:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −g

∂ζ

∂x
+

∂

∂z

(
Av

∂u

∂z

)
, (4.1)

∂u

∂x
+

∂w

∂z
= 0. (4.2)

The symbols g and Av indicate the acceleration due to gravity and the vertical
eddy viscosity, respectively. Time is represented by t. The velocities in the x- and z-
directions are u and w, respectively. The water level is denoted by ζ and H represents
the mean water depth. The level of the seabed is represented by −H+h (see Fig. 4.3).
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4.2.2 Sediment transport and seabed behaviour

The sediment transport model in this chapter describes bed load transport. This
mode of transport is assumed to be dominant in offshore tidal regimes. As the velocity
distribution over the water column is calculated explicitly, bed load transport can be
modelled as a function of the shear stress at the seabed. This is in contrast with
depth-averaged models, which calculate the sediment transport as a function of the
depth-averaged velocity. The following general volumetric bed load formula for Sb is
used, following Komarova and Hulscher [2000]:

Sb = α|τb|b
[
τb − λ1

∂h

∂x
− λ2|τb|∂h

∂x

]
, (4.3)

with τb the shear stress at the seabed:

τb = Av
∂u

∂z

∣∣∣∣
z=−H+h

. (4.4)

The power of transport, represented by b is set at 1/2. The proportionality con-
stant α is set at a value of 0.3 s m−2 following Van Rijn [1993] and incorporates the
density difference between water and sediment. The first scale factor for the bed slope
mechanism (λ1) and the second scale factor λ2 take directly into account that sand is
transported more easily downhill than uphill. The default values of λ1 and λ2 are set
at 0.002 and 3.33, respectively. In the stability analysis (Chapter 3), λ1 and λ2 were
taken together (i.e. λ = λ1 + λ2|τb|z=−H) since both terms in that case contribute
in the same manner since h � H. A threshold of sediment motion is not taken into
account explicitly at this point.

The sediment balance, which couples the flow model Eqns. (4.1) and (4.2) with
the sediment transport model Eq. (4.3), calculates the position of the seabed based
on the principle of conservation of mass as a function of time:

∂h

∂t
= −∂Sb

∂x
. (4.5)

The bed level will hardly vary on a tidal timescale. The behaviour of the bed can
therefore evaluated on a larger timescale if desired.

4.2.3 Boundary conditions and assumptions

The boundary conditions at the water surface (z = ζ) are given as follows:

∂ζ

∂t
+ u

∂ζ

∂x
= w, (4.6)

∂u

∂z
=

τw

Av
. (4.7)
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in which τw describes the wind induced shear stress at the sea surface. The verti-
cal velocity component at the seabed (z = −H + h) is described by the kinematic
condition:

∂h

∂t
+ u

∂h

∂x
= w, (4.8)

The horizontal flow components at the seabed are modelled with the help of a partial
slip condition (S is the resistance parameter controlling the resistance at the seabed).
The boundary condition couples the resistance at the seabed with the water movement
across the seabed:

Av
∂u

∂z
= Su. (4.9)

Furthermore, we use non-periodic boundary conditions in the horizontal and ver-
tical direction. This set up also gives more freedom to the system with respect to
the selection of the fastest growing mode. In a periodic set up, the amount of modes
which can be unstable is limited by the horizontal length of the grid, since we pose a
limitation on the wavelength the simulation model is allowed to select. Since we are
also interested in the behaviour of the wavelength of a sand wave during its evolution,
we keep the simulation model set up as generic as possible.

At the inflow boundary, a discharge is prescribed, with a certain velocity profile in
the vertical plane. In case of a steady flow, two possible origins can be investigated.
These are (I) a wind driven current (τw) and (II) a current induced by a pressure
gradient. The vertical structure for each of these cases is:

I : ur =
τw

Av

(
H +

Av

S
+ z

)
, (4.10)

II : ur = P

(
1
2
z2 − Av

S
H − 1

2

)
, (4.11)

with P a parameter determining the magnitude of the pressure gradient and thereby
the depth averaged velocity. These profiles are equivalent to the analytical expressions
of the basic state situation over a flat seabed used in the stability analysis with the
seabed positioned at z = −H + h.

The outflow boundary is physically an open boundary. However, the simulation
model requires a prescribed boundary condition. Therefore, an estimate of the water
level is supplied to the simulation model at the outflow boundary. Furthermore, the
derivatives in the horizontal direction for the horizontal and vertical velocities are set
to zero at the outflow boundary.

4.2.4 Discussion boundary conditions

Even though we are setting up the simulation model in a non periodic way, we inves-
tigate the possibility of applying periodic conditions. This we wish to do since these
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Figure 4.3: Definition sketch of the non-periodic dimensional model geometry of the physical
domain. The horizontal and vertical direction are denoted by x and z. The water surface is
defined by ζ relative the z = 0. The seabed is defined as h and is relative to the average seabed
position, −H.

boundary conditions provide the main benefit of simplifying the system, decreasing
calculation time. Since the outflow and inflow boundary are then the same, no ex-
tra physical space needs to be reserved near the boundaries, avoiding the problem of
physical disturbances reaching the boundaries and reflecting.

A wind stress applied at the sea surface (Eq. (4.10) and (4.7)) is balancing the
resistance in the system equally over the entire domain. This forcing mechanism
induces water movement without a gradient in the water level for a flat seabed. The
water level and velocity profile at the outflow boundary are therefore the same as
the inflow boundary (when the position and gradient of the seabed are the same at
both boundaries). Therefore, it is also possible to use periodic boundary conditions
in the horizontal direction. Obviously, the vertical direction always has to remain
non-periodic.

When we apply a pressure gradient at the inflow boundary Eq. (4.11), the wa-
ter level decreases moving away from the inflow boundary, due to resistance in the
domain. Due to continuity Eq. (4.2), the depth-averaged velocity increases along
the reducing water level. Therefore, the velocity profiles, water and seabed levels
at the in- and outflow boundary can never coincide. Tidal motion can be seen as
a time-dependent pressure gradient at the inflow boundary. Therefore, in the set
up of applying periodic boundary conditions, the entire tidal wave needs to be de-
scribed. This is practically not feasible, since we require accuracy on a relative small
length scale (sand waves with a wavelength of hundreds of metres compared to the
wavelength of a tidal wave of hundreds of kilometres). However, periodic boundary
conditions are also here possible in the case of a (time-dependent or not) pressure
gradient if we incorporate the pressure gradient directly in the momentum equation
Eq. (4.1). The simulation model still contains a free surface, which responds to vari-
ations in the seabed. However, no gradient is present in the case of a flat seabed,
making periodic boundary conditions possible.
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4.3 Numerical approximation

4.3.1 Spatial discretisation

A spectral collocation method is used to obtain a discrete approximation of the equa-
tions of the solution, on a set of discrete grid points [Canuto et al., 1988] and Fornberg
[1996]). This method is applied in both coordinate directions. The discrete grid points
are specified by collocation points. The grid points are given by the most commonly
used Chebyshev Gauss-Lobatto points:

ξk = cos(
πj

N
), with j = 0, 1, ..., Nk and k = 1, 3. (4.12)

The collocation method implies that the residual function is forced to zero at these
points. Nk defines the number of intervals in the ξk-direction. The solution is repre-
sented at each grid point using one-dimensional basis functions. The basis functions
consist of the Chebyshev polynomials defined by:

Tp(Z) = cos(p cos−1(Z)), with p = 1, 2, ... (4.13)

For the grid points, the Chebyshev collocation derivative can be obtained in two
different ways. The first method is to calculate the derivatives in spectral space
(transform method). This method involves three steps. Firstly, a Discrete Chebyshev
Transform has to be applied, after which differentiation can take place in spectral
space. The solution than has to be transformed back to physical space using the
Inverse Discrete Chebyshev Transform.

The second method — differentiation in physical space — combines the three steps
of the transform method. This results in a matrix D given by [Canuto et al., 1988],
which can be used to calculate the first derivative at the grid points:

Dij =




ci+j
i

cjxi−xj
, i �= j

−xj

2(1−x2
j )

, 0 < i = j < N

− 2N2+1
6 , i = j = 0

2N2+1
6 , i = j = N.

(4.14)

where

cj =

{
2, j = 0 or j = N

1, 1 ≤ j ≤ N − 1.
(4.15)

The matrix necessary to calculate a second derivative at the grid points can be
calculated by taking the square of matrix D given in Eq. (4.14). The vector containing
the function values U at the collocation points is multiplied with this first or second
derivative matrix to obtain a vector containing the values for the first or second
derivative values at the collocation points, respectively. The two-dimensional version
of Eq. (4.14) in the horizontal and vertical direction can be found in the appendix in
Eqns. (4.44) and (4.45).
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Figure 4.4: Computational grid and indices used in the code.

4.3.2 Coordinate transformation

The coordinate system used for the computational space is represented by ξ1 for
the horizontal direction and ξ3 for the vertical direction (see also Fig. 4.4). Both
directions of the computational coordinate system have a domain of [-1,1] to coin-
cide with the Gauss-Lobatto grid. This system is obtained by mapping the physical
space, represented by the Cartesian coordinates x and z, with the following analytical
transformations:

ξ1 = 1 − 2x

NswLsw
, (4.16)

ξ3 = 1 − 2(z − ζ)
ζ + H − h

, (4.17)

with Lsw the initial wavelength of the sand wave chosen to be investigated with the
simulation model and Nsw the number of sand waves in the domain. The total length
of the domain is therefore Nsw times the wavelength Lsw.

Following this transformation, the total number of collocation points remains the
same irrespective of the local water depth. This representation allows for a smooth
description of the seabed topography together with a varying water surface on a
rectangular grid.
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4.3.3 Partial derivatives

Next, we compute the necessary partial derivatives for (ζ, h, u, w), to compensate for
the changes in physical space projected on the fixed computational grid:

∂u

∂x
=

∂u

∂ξ1

2
NswLsw

+ 2
∂u

∂ξ3

ζx − 1
2 (ξ3 − 1)(ζx − hx)
ζ + H − h

, (4.18)

∂u

∂z
=

∂u

∂ξ3

2
ζ + H − h

, (4.19)

∂2u

∂z2
=

∂2u

∂ξ32 {
2

ζ + H − h
}2, (4.20)

∂u

∂t
= 2

∂u

∂ξ3

∂ζ

∂t

1 − 1
2 (ξ3 − 1)

ζ + H − h
+

∂u

∂η
. (4.21)

The necessary partial derivatives for the other variables w, h and ζ can be derived in
a similar manner.

4.3.4 Temporal discretisation flow model and grid

The spatial approximation using a Chebyshev grid is the best in the interior of the
domain. Therefore an increased density of grid points is required near the boundaries.
The numerical convergence rate of the method decreases significantly if this is not the
case. This aspect has an effect on the choice of the time scheme. An explicit scheme is
desirable, with respect to the computational effort necessary per time step. However,
the size of the time step, is determined by the smallest distance between grid points
in the domain. Therefore, a higher density of grid points near the boundaries — as
with the Gauss-Lobatto grid — poses a problem. If we increase the total number
of grid points, the smallest distance between grid points will decrease more than the
relative increase in points. The time step will become too small to be efficient.

The most practical approach is therefore to use a fully implicit formulation. In
this case the time step does not depend anymore on the spatial discretisation for
stability reasons. All the properties of u, w, ζ and h are calculated simultaneously
at each time step. The calculation cost per time step is higher than for an explicit
formulation. However, the time steps that can be taken are much larger.

The system is solved with the routine D02NGF from the Nag library. It is a
general-purpose routine which can integrate initial value problems, for a stiff system
of ordinary differential equations, with coupled algebraic equations. The system is
written in the form:

A(t, Y )
dY

dt
= r(t, Y ), (4.22)

with Y = (u,w, ζ, h) the solution vector. On the left hand side, we find the derivatives
of the solution vector Y . Matrix A can be found in the Appendix Eq. (4.46).
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On the right hand side, their dependency on time can be found. Here, the differ-
ential equations, which do not have a time-dependent term, appear as the residuals of
the continuity equation (4.2) and most of the boundary conditions. When the right
hand side is zero, we are looking at a steady state solution. If it is non-zero, the
solution is changing in time.

The momentum balance Eq. (4.1) containing the temporal discretisation in the
form of Eq. (4.22) can be written as follows:

du

dt
= −2

∂ζ

∂t

1 − 1
2 (ξ3 − 1)

ζ + H − h
D3

1u − 2
NswLsw

uD1
1u

− 2
ζx − 1

2 (ξ3 − 1)(ζx − hx)
ζ + H − h

uD3
1u +

2
ζ + H − h

wD3
1u

− g
2

NswLsw
D1

1ζ + Av{ 2
ζ + H − h

}2D3
2u. (4.23)

Here Dk
i is the k -th derivative in the i -th direction. The partial derivatives hx

and ζx are of the form of Eq. (4.18).
The continuity equation Eq. (4.2) is an instantaneous constraint that applies at

each time level and can be found on the right hand side of Eq. (4.22) as a time
independent equation:

2
NswLsw

D1
1u + 2

ζx − 1
2 (ξ3 − 1)(ζx − hx)
ζ + H − h

D3
1u − 2

ζ + H − h
D3

1w = 0. (4.24)

At the inflow boundary Eq. (4.10) and Eq. (4.11) we find:

u = prescribed|x=−1 and w = 0|x=−1 . (4.25)

At the outflow boundary, we find the horizontal derivatives of u and w set to zero,
resulting in:

2
NswLsw

D1
1u + 2

ζx − 1
2 (ξ3 − 1)(ζx − hx)
ζ + H − h

D3
1u = 0

∣∣∣∣
x=1

, (4.26)

2
NswLsw

D1
1w + 2

ζx − 1
2 (ξ3 − 1)(ζx − hx)
ζ + H − h

D3
1w = 0

∣∣∣∣
x=1

. (4.27)
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Furthermore, the water level is fixed at the downstream boundary. The boundary
condition at the free surface can now be written as a kinematic condition Eq. (4.6)
together with a shear stress at the surface equal to the wind stress Eq. (4.7) (if
present):

∂ζ

∂η
+ u

2
NswLsw

D3
1ζ = w

∣∣∣∣
z=ζ

, (4.28)

− 2
ζ + H − h

D3
1 = τw

∣∣∣∣
z=ζ

. (4.29)

At the seabed we find another kinematic condition Eq. (4.8) and the partial slip
condition Eq. (4.9):

w − u
2

NswLsw
D1

1h = 0
∣∣∣∣
z=−H+h

, (4.30)

u − 2
ζ + H − h

Av

S
D3

1u = 0
∣∣∣∣
z=−H+h

. (4.31)

The sediment transport model Eq. (4.3) in discretised form can be written as:

Sb = α|( 2
ζ + H − h

)2D3
1u|b

[
D1

1u − (λ1 + λ2|τb|)ζ + H − h

NswLsw
D1

1h

]
, (4.32)

with τb the shear stress at the seabed defined by Eq. (4.4). The net inflow of sediment
is assumed to be zero. The seabed evolution Eq. (4.5) can now be described on the
computational grid by:

∂h

∂t
=

2
NswLsw

D1
1Sb. (4.33)

For completeness, we have to specify a boundary condition at a boundary coin-
ciding with the horizontal position of the flow boundaries for the bottom evolution
equation. This is equivalent to the boundary condition necessary for the water level.
This can also be done by taking the derivative of the sediment transport equal to zero
coinciding with a fixed seabed. At this point, only the initial response is needed here
for comparison with the results from the stability analysis.

4.3.5 Initial values and time stepping

For a flat seabed, the initial conditions can be derived analytically. In case the seabed
is not flat, but contains for example a sinusoidal feature, we can use this solution for a
flat seabed — which is equivalent to a basic state solution in a stability analysis — as
an estimate for the initial condition. Secondly, a better initial condition can be given
by the solution of the stability analysis (especially for small amplitudes (h � H)) in
Chapter 3 [Németh et al., 2002].
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However, the estimate of the initial solution prescribed with these two approaches
for a sinusoidal sand wave are still not the exact solutions of the system. This differ-
ence in applied solution and the actual solution can be seen as an initial disturbance in
the system. The order of magnitude of the error/disturbance depends on the ratio of
h/H, the spatial discretisation and the requested accuracy from the time integrator.
The propagation velocity c of a wave in shallow water is calculated with:

c =
√

gH (4.34)

A steady state solution, which we in general require to start a simulation, can be
achieved by letting the disturbances travel through the domain a couple of times. For
a typical water depth of 30 m, the propagation velocity is about 17 m s−1 according to
Eq. (4.34). For a domain with a length of 2 km, this would mean that a disturbance
in the water motion due to the incorrect initial solution takes about 120 s to travel
from one end of the domain to the other. After about 600 s we can expect a virtually
steady state solution. This solution can then form the starting point for a simulation.

In the limit (t → ∞) the changes in time for a steady state solution should be equal
to zero. Therefore the residuals of Eq. (4.22) are practically zero which is discussed
below. Furthermore, this aspect can be seen by looking at the magnitude of the time
step of the time integrator. This time step is small initially due to the calculation of
all the dependencies of the system and possible initial changes in the physical system.
Large time steps can be taken when the steady state situation has been attained, as
long as the seabed does not change.

When the seabed is allowed to change, the magnitude of the time step becomes
a function of this seabed change. The time steps are then still large due to the slow
evolution of the seabed compared to the water movement, in case of a steady state
current. This is due to the difference in timescale for the water motion and seabed
change. This only holds for the case of a steady current or a block current. In the
case of pure tidal motion, the time step size is again determined by the timescale
of the water motion. Therefore, if we wish to avoid long computation times during
long-term morphological simulations including tidal motion, we need to incorporate
a different time stepping mechanism for seabed change.

4.4 Results

We start with the investigation of a steady flow. First, we discuss in short this steady
flow and its effects on the behaviour of the seabed with the help of a stability analysis.
The steady flow is assumed to be induced by a wind stress applied at the sea surface.
Next, we show that the results from the simulation model coincide with the stability
analysis.
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Figure 4.5: Wavelength and migration rate in a unidirectional steady current induced by a wind
stress applied at the sea surface. Fig. (a) shows the wavelength (m) of the fastest growing mode
(FGM) as a function of the value of the slip parameter S (m s−1). Fig. (b) shows the migration
rate in metres of the FGM shown in (a). If we increase the value of the resistance parameter S
we obtain sand waves with dimensions in the order of hundreds of metres.

4.4.1 Steady flow and sand waves in stability analysis

We start by focussing on a unidirectional steady current inducing the initial evolution
of bed forms. The bed forms we find in this case can also be referred to as dunes
[Fredsøe and Deigaard, 1992], since a unidirectional steady current is similar to river
flow. For typical values of the slip parameter S in the North Sea (see Table 4.1),
we find long wavelengths (see Fig. 4.5). Hereby, we used in the stability analysis a
combined non-dimensional value for λ1 and λ2:

Sb = α|τb|b
[
τb − λ

∂h

∂x

]
with λ = λ1 − λ2|τb|, (4.35)

with λ equal to 0.0085. However, if we increase the value of the slip parameter, we
find shorter bed forms [Németh et al., 2001] (See Fig. 4.5 and Fig. 4.7. The latter
figure is discussed later in more detail.), with wavelengths of a couple of hundreds
of metres. This coincides with the result found in [Németh et al., 2002]. In a tidal
environment with a small asymmetry in the water motion, the tidal motion is the main
factor determining the choice of sand wave length. The residual currents due to tidal
motion (see Fig. 4.2) induce a wider range of modes which can become unstable than
the unidirectional steady current. An increase in resistance can increase this range
of modes, for which the wavelength of the fastest growing mode (FGM) is smaller
(larger wave number). Here, the FGM is the mode which has the largest growth rate
from linear theory, and is expected to dominate over the rest.
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4.4.2 Mathematical validation simulation model

Flat bed

We start with a steady current over a flat bed, which is equivalent to the basic state
used in the stability analysis. We apply a wind stress at the sea surface (see Eq. (4.10)
and Fig. 4.6) together with a coinciding inflow boundary across a flat seabed. This
analytically obtained profile is the same over the entire domain. This investigation
of a flat seabed shows the functionality of the continuity equation Eq. (4.2), the
boundary conditions Eqns. (4.6)- (4.11) and the viscosity term in the momentum
equation Eq. (4.1).

We investigate the magnitude of the residuals on the right hand side of Eq. (4.22),
whether the solution coincides with the solution of the physical system. Since the
solution provided is a steady state solution and the velocity in the vertical is zero
(there is no slope in the seabed or water level), all the residuals on the right hand
side of Eq. (4.22) should be zero within machine accuracy limits. The profile in the
vertical can be found in Fig. 4.6.

If we would apply a pressure gradient at the inflow boundary, a gradient is present
in the water surface due to the friction in the system. This is in contrast to the stability
analysis, where the velocity profile is the same over the entire domain. This makes
a direct comparison more difficult. However, this can also be seen as a good test for
the simulation model and the usage of the basic state in the stability analysis.

We can take an initial condition for a flat seabed and an equal velocity profile
over the entire domain equal to inflow boundary for a pressure gradient Eq. (4.11).
If we fix the water level downstream (z = 0) and fix the depth-averaged velocity at
the inflow boundary, we obtain a steady state solution with a slope in the water level.
The continuity equation enforces the depth-averaged velocity to increase along this
decreasing slope. This slope decreases 8.45 ·10−3 m per 10 km for a standard value of
the resistance parameter S of 1 · 10−3 m s−1 (see Table 4.1). In case we are looking
at bed forms in a unidirectional steady current, the typical value for S is 1 · 10−2 m
s−1 and gives a slightly larger slope of 1.46 · 10−2 m per 10 km. This slope is so small
compared to the length scale under investigation, that we can assume the validity as
expected of the basic state used in the stability analysis.

Residuals small sand waves

The question to be answered is whether the formation process of small amplitude
sand waves can be reproduced and verified with a simulation model. To check this
we use the results obtained with the stability analysis. The vertical velocity is zero
for a flat bed situation. The vertical velocity to be imported in the simulation model
is equal to the calculated vertical velocity in the perturbed state in the stability
analysis. The sum of the residual horizontal velocity and the basic state forms the
actual horizontal velocity with sand waves applied on the seabed. These results,
produced on an equidistant grid,
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Figure 4.6: Analytical solution of the horizontal velocity profile over a flat bed in case of a wind
stress applied at the sea surface (straight solid line) Eq. (4.10) and a pressure gradient (curved
dotted line) Eq. (4.11). The linearity of the velocity profile in case of a wind stress is due to
the choice of a constant viscosity. The free surface coincides with z = 0 m and the seabed with
z = −30 m. The vertical velocity is equal to zero. This profile is applied at the inflow boundary
for all times (with a fixed or time-dependent discharge) and as initial condition over the entire
domain.

xl, l = 0, 1, .., N, (4.36)

are interpolated on the Gauss-Lobatto grid, using cardinal polynomials:

Kj(x) =
ω(x)

(x − xj)ω′
j

, ω′
j = ω′(xj), (4.37)

and

ω(x) =
N∏

k=0

(x − xl). (4.38)

These cardinal polynomials can be used to represent a polynomial (INf) which
interpolates a general function, in this case the solution of the stability analysis, at
the Gauss-Lobatto points:

(INf)(x) =
N∑

j=0

Kj(x)fj . (4.39)

The time derivative is equivalent to the residuals in Eq. (4.22). For the other equa-
tions, the magnitude of the residuals, is a measure for the error. To check the validity
of the spatial discretisation, we therefore do not need to use the time integrator. The
results for a wavelength of 600 metres are imported in the simulation model. The
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Figure 4.7: Solution of the stability analysis giving residuals equal to zero in the simulation model.
In the upper figure (a), the vertical velocity is shown with the solid line showing negative, the
dashed line positive and the dotted line velocities equal to zero. The magnitude of the velocities
depends on the ratio of the sand wave amplitude over the water depth (ε = h/H). The vertical
velocity looks different from previous work discussing sand waves in a tidal environment (see
Fig. 4.2). The main difference is that we are looking here at a steady current and not at the
residuals over a tidal cycle. This means looking at the boundary condition for the horizontal flow
Eq. (4.8), that the vertical velocity needs to follow the profile of the seabed. This is due to the
occurrence of a horizontal velocity �= 0, due to the horizontal viscosity model enabling long bed
waves to be excited (there is evolution due to water movement, and the slope effect is very small
for long bed forms). The figure below (b) shows the two sand waves with a typical wavelength
of 600 metres over which the water is flowing.
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solution of the stability analysis is multiplied by ε = h/H. For a small enough ε, the
solution from the simulation model is equal to the solution from the stability analysis
(residuals equal zero within numerical accuracy, with a difference of the order (ε2).

Growth and migration

As a final check, we turned on the simulation model and let the simulation model
calculate a seabed change over a period of 7000 s. This is a small time interval, in-
significant from a morphological perspective. However, from a mathematical point of
view sufficient, since the aim is here to check the validity of the simulation model.
We applied again a steady flow induced by a wind stress. With the system set up
following the values in Table 4.1, except for the value of the slip parameter which
is set to 0.01 m s−1 and the slope factor. For comparison, we used the same com-
bined bed slope factor used above (Eq. (4.3)). Furthermore, we took N1 = 30 and
N3 = 15, which are the number of grid points in the horizontal and vertical direction
(Eq. (4.12)), respectively. The amplitude h is set at 0.01 m, which is small compared
to the water depth H of 30 m. Hereby, we investigated a pattern of three sand waves
in a non-periodic domain.

We calculated the growth and migration rates, for a whole range of wavelengths.
We use a least squares method, to estimate the growth and migration rates based
on the initial and calculated seabed obtained with the simulation model. This curve
fitting process is used to fit a sinus with a minimal deviation to the position of the
seabed, with sinusoidal sand waves imprinted on it, in the grid points. Here we inves-
tigate the initial response. Therefore, we are allowed to assume the wavelength does
not change, and only the amplitude and position in the horizontal (phase/migration)
changes. This approach gives an estimate of the amplitude and phase of a sinusoidal
signal, in this case the sand wave. This coincides with the properties the stability
analysis gives insight into (growth and migration of a sinusoidal sand wave), which
we are comparing the results with. These properties of the imposed sand waves and
calculated initially changed sand wave can now be determined as follows:

h(x) = Alscos(kx) + Blssin(kx), (4.40)

with h(x) the position of the seabed as a function of the horizontal coordinate and ϕ
the phase shift defined by:

ϕ = atan(
Bls

Als
), (4.41)

and A and B based on the depths at the grid points:

Als =
∑

h(x) cos(kx)∑
cos2(kx)

, (4.42)

Bls =
∑

h(x) sin(kx)∑
sin2(kx)

. (4.43)
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Figure 4.8: Comparison growth and migration rates of the stability analysis and simulation model.
Fig. (a) shows the initial growth rate presented in the change of amplitude per year (m yr−1).
Here we have to keep in mind that the growth rate is, according to the stability analysis, an
exponential function of the amplitude. This means that the growth rate will increase during the
initial evolution of a sand wave. The solid line depicts the results from the simulation model. The
dotted line corresponds to the results from the stability analysis. Fig. (b) shows the migration
rate (initial response calculated in m yr−1).

Fig. 4.8 shows the characteristics of the initial response for a range of wavelengths.
Fig. 4.8 (a) depicts the growth rates, whereby we find a range of wavelengths for which
these growth rates are positive. For this range, sand waves are initially unstable. Fur-
thermore, we find for all long bed waves positive growth rates. This is due to the usage
of a constant viscosity. It can be explained by looking at the boundary conditions
showing that the vertical velocity at the seabed is a function of the horizontal velocity
at the seabed (Eq. (4.8) and Eq. (4.9)). Both the horizontal and vertical velocity are
therefore not equal to zero. This is due to the usage of a slip parameter to obtain a
more realistic shear stress with this simplified viscosity model. Smaller wavelengths
than about 400 m show negative growth rates. These bed forms are dampened by
the simulation model, as coincides with the results for this case with the stability
analysis. Here, the FGM has a wavelength of about 750 m. Also this coincides with
the results from the stability analysis.

The migration rate of the sand waves is shown in Fig. 4.8 (b). Typical rates
for various wavelengths are about 200 m yr−1. These migration rates are due to
the asymmetry in the water motion since we are looking at a unidirectional steady
current. Compared to observations these migration rates are much higher than those
observed for sand waves. However, observations generally discuss sand waves in a
tidal environment with only a small non-periodic part in the water motion (usually
in the range of 0.1 m s−1 inducing migration rates in the order of 10 m yr−1 ([Allen,
1980], [Lanckneus and De Moor, 1991], [Van Maren, 1998] and [Németh et al., 2002]).
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Therefore these larger migration rates can be explained and give further confidence in
the simulation model set up. As was found in the stability analysis, the phase speeds
are a linear function of the wave number (k = 2π/Lsw). This means that a larger
wave number or smaller wavelength implies a larger phase speed. This results in a
larger migration rate for smaller bed forms. The magnitude of this migration rate for
a certain wavelength depends largely on the magnitude of the steady current and on
the value of the slip parameter S.

The results seem to coincide very good. Hereby, we have to acknowledge a couple
of sources of error in the analysis:

• The results from the stability analysis have an inaccuracy;

• We are looking at a non-periodic domain in the simulation model and in the
stability analysis we have a periodic domain;

• An error is made translating the result from the simulation model with the least
square method, to enable a comparison with the stability analysis.

Therefore, it is not our goal to reproduce the results exactly. However, it is possible
to obtain a result with the simulation model which converges asymptotically to the
result of the stability analysis if we increase the accuracy of the time integrator, the
number of nodes in the system (Nk in Eq. (4.12)) and the number of sand waves in
the domain. To obtain Fig. 4.8, we already needed to increase the time integrators
accuracy for smaller wavelengths, whereby the solution converged to the analytical
solution. Furthermore, we found that if we increase the number of wavelengths in the
domain from two to three, we decrease the difference from the stability analysis from
5 · 10−2 to 2 · 10−2. The latter results (determined with a domain with three sand
waves) are shown in Fig. 4.8.

4.5 Discussion

We developed a simulation model, aimed at describing the behaviour of sand waves,
present in shallow shelf seas. We started with validating the simulation model math-
ematically by comparing an analytical solution for a flat seabed with the results from
the simulation model. Next, we investigated the residuals of the time integrator af-
ter importing the analytical solution from the stability analysis for a steady state
situation. Subsequently, we simulated a small amount of time with the simulation
model to compare the results directly with the results from the linear stability anal-
ysis. Hereby, remains the difference that the simulation model is discrete and that
the domain is non-periodic in the horizontal in the simulation model and periodic
in the stability analysis. Furthermore, the analysis method to compare the results
introduces an error. However, the analysis showed that if we take enough grid points
(equivalent to the number of modes in the approximation), enough sand waves, and
request a high enough accuracy from the time integrator we can obtain a solution
close to the solution of the stability analysis.
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4.6 Conclusions

In this chapter we developed a numerical simulation model able to describe sand wave
excitation and select the initially most unstable mode assuming sand waves are free
instabilities of the water-seabed system.

In the stability analysis the sand waves predicted did not allow for interference
of modes due to the linear assumption. This interference encompasses energy being
transferred from one component or wave number of the bed pattern to another. There-
fore, this stability analysis does not say anything about the final pattern, since only
one component can be investigated at a time. The simulation model developed and
validated mathematically here, can be used to investigate the non-linear behaviour of
sand waves.

Furthermore, we investigated the results for small amplitude sand waves under a
steady flow with the help of the stability analysis. It has been shown that with a
set up describing sand waves in a tidal environment, we find bed features existing
in a unidirectional steady current similar to dunes. These dune-like bed forms are
found when the roughness of the seabed, compared to a typical North Sea situation,
is large. For smaller values of the resistance of the seabed, taken into account by the
slip parameter S, the instability mechanism is very weak, resulting in a FGM with
very long wavelengths.

Lastly, the numerical approach presented here enables us to incorporate more
realistic aspects into the modelling framework. It is clear that the simulation model
presented here can straightforwardly be extended to include other aspects such as
a critical shear stress, suspended sediment transport or a non-erodible layer in the
seabed.
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4.8 Appendix

The two-dimensional version of the derivative matrix D in Eq. (4.14) in the horizontal
direction can be written with the derivative matrix D of the size N1×N1 as N3 blocks
on the diagonal of the following square matrix with N1 × N3 columns:

D1 =




D1
11 . . . D1

1N
...

. . .
... 0

D1
N1 · · · D1

NN

D1
11 . . . D1

1N
...

. . .
...

D1
N1 . . . D1

NN

D1
11 . . . D1

1N

0
...

. . .
...

D1
N1 . . . D1

NN




(4.44)

The rest of the elements are zero. The two-dimensional version of the derivative
matrix D in Eq. (4.14) with size N3 × N3 to determine derivatives in the vertical
direction can be written as the elements of D3 in a diagonal pattern with a spacing
of N1 elements as follows:

D3 =




D3
11 0 D3

12 0 D3
1N 0

. . . . . . . . .
0 D3

11 0 D3
1j 0 D3

1N

D3
i1 0 D3

ij 0 D3
iN 0

. . . . . . . . .
0 D3

i1 0 D3
ij 0 D3

iN

D3
N1 0 D3

Nj 0 D3
NN 0

. . . . . . . . .
0 D3

N1 0 D3
Nj 0 D3

NN ,




(4.45)

The rest of the elements are zero.
The matrix below with a total size of N1×N3×2+N1×2 can be found in Eq. (4.22)

and consist of the variables depending on time in the momentum equation Eq. (4.1)
(the first N1 × N3 rows), the continuity equation Eq. (4.2) giving elements equal to
zero (the next N1 × N3 rows), and the equation for the water level Eq. (4.6) and
the bed evolution Eq. (4.8) (2 × N1 rows). For the water level, we use the kinematic
boundary condition at the free surface. This is equivalent to using a depth-averaged
formulation based on the continuity equation and this kinematic boundary condition
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often used to describe a free surface:

A =




∂u
∂t 0 f(∂ζ

∂t ) f(∂h
∂t )

0 0 0 0
0 0 ∂ζ

∂t 0
0 0 0 ∂h

∂t


 (4.46)

See Eq. (4.23) for the numerical notation.
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Chapter 5

Finite amplitude sand waves

Abstract: A two-dimensional vertical (2DV) flow and morphological numerical model
describing the behaviour of offshore sand waves has been developed. The model contains
the 2DV shallow water equations, with a free water surface and a general bed load for-
mula. The water movement is coupled to the sediment transport equation by a seabed
evolution equation. Using this model, we investigate the properties of the system for finite
values of the amplitude of sand waves for a unidirectional steady current and unidirec-
tional block current simulating tidal motion. As a result, we find sand wave saturation
for heights of 10-30% of the average water depth with a timescale of decades. The sta-
bilisation mechanism found here causing sand waves to saturate is based on the balance
between the shear stress at the seabed and the fact that sediment is transported easier
downhill than uphill. The migration rate of the sand waves decreases slightly during their
evolution. For a unidirectional steady flow the sand waves become asymmetrical in the
horizontal direction and for a unidirectional block current asymmetrical in the vertical. A
sensitivity analysis showed the slope effect of the sediment transport plays an important
role herein. Furthermore, the magnitude of the resistance at the seabed and the eddy
viscosity influence both the timescale and the height of the fully-developed sand wave.
The order of magnitudes found of the time and spatial scales coincide with observations
made in the southern bight of the North Sea, Japan and Spain. Finally, the recovery of
dredged sand waves is investigated1.

Keywords: sand waves, finite amplitude, migration, evolution, saturation, dredging,
shelf seas, 2DV.

1A shortened version of this chapter has been submitted to the 3rd IAHR Symposium on River,
Coastal and Estuarine Morphodynamics by A.A. Németh and S.J.M.H. Hulscher entitled ”Finite
amplitude sand waves in shallow seas”.
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5.1 Introduction

Offshore sand waves have typical wavelengths of several hundreds of metres and can
be found in shallow seas such as the North Sea. Their crests are oriented more or less
perpendicularly to the principal direction of the current [Hulscher, 1996]. The heights
of sand waves can grow to as much as 30% of the average water depth. Therefore, the
relative sand wave height can be considered as significant. According to Johnson et
al. [1981], the sand wave heights diminish from the south to the north of the North
Sea due to a diminishing tidal amplitude, the lower availability of sediment needed
for the formation of sand waves and the increase in the ratio of suspended load to
bed load transport.

The sand waves are found to be almost symmetrical near the top of the sandbanks
(e.g. [Lanckneus et al., 1995]), whereas their amplitude diminishes near the top of
these sandbanks [Langhorne, 1982]. This corresponds with the observations that the
sand wave height is often smaller at smaller depths. Furthermore, several authors
have determined the lee side of sand waves, on sandbanks, is often oriented towards
the crest of the sandbank and towards the residual current. Belderson and Stride
[1969] found a correlation between the direction of sand wave asymmetry and the
tidal current asymmetry (see also Fig. 5.1). However, the problem is more compli-
cated. In the Taiwan Strait, uniform asymmetrical, symmetrical as well as irregular
sand waves are found. These differences in sand wave shapes, all found in the same
region, are believed to be caused by residual currents induced by tidal movement,
seasonal fluctuation of the flow and disturbances in these flow patterns caused by dif-
ferent topographical features [Boggs, 1974]. Harris [1989] found that over a period of
five months, the asymmetry of the sand waves reversed due to wind-driven currents
during the Monsoon season in the Adolphus Channel of Australia. This indicates
that asymmetry can change over a short period of time relative to the timescale of
sand waves. If the timescale of the variations in sediment flux are smaller than the
response time of the bed form, the shape will not change significantly [Bokuniewicz et
al., 1977]. The response time depends on the volume of the sand wave. The difference
in response time can be the cause of opposite asymmetrical orientations found within
one study area.

Insight into the behaviour of these sand waves is crucial to enable cost-effective
management practices. Due to the large height of sand waves compared to the water
depth in combination with the timescale of years on which they are assumed to be
active, they play an important role with respect to for example navigation in coastal
seas (see also Chapter 2).

Knaapen and Hulscher [2002] developed an evolution model based on data assim-
ilation, and investigated data sets of a field of sand waves near Japan. This analysis
showed that when a sand wave is dredged, it is able to recover with a timescale of
eight years. Morelissen et al. [2002] extended this model by allowing sand waves
to migrate using a modified Landau equation. Despite the success of this empirical
method, it does not include the full knowledge of sand wave physics. Therefore, it
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Figure 5.1: Sand waves in the North Sea. Fig. (a) shows sand waves of the coast near IJmuiden
in the Netherlands. The sand waves are asymmetrical and have a wavelength of about 250 m
and a height of maximum 2 m. Fig. (b) shows sand waves at Noord-Hinder in the North Sea,
located near the Eurogeul at an average water depth of about 38 m. Their wavelengths are 300
m and their height is typically 6 m. The sand waves are more symmetrical in the horizontal
direction and asymmetrical in the vertical with their sharp crests and elongated troughs.

cannot facilitate the investigation of the mechanisms leading to sand wave behaviour.
Based on Huthnance [1982a and 1982b], Hulscher [1996], Gerkema [2000] and

Komarova and Hulscher [2000]), Németh et al. [2002] (see Chapter 3) developed a
model describing the formation and migration of infinitely small sand waves based on
a stability analysis. This for periodic water motion in combination with a steady part
based on either a wind stress at the sea surface or a pressure gradient. The model
gives insight into the initial evolution and migration of sand waves assuming they are
free instabilities of the seabed water system.

Komarova and Newell [2000] investigated the model by Hulscher [1996] combined
with the time-dependent viscosity parameterisation from Komarova and Hulscher
[2000] with a weakly non-linear analysis. This analysis led to coupled spatial variations
of sand waves and the average bed level, of which the latter shows similarities with
tidal sandbanks. However, sand wave migration cannot be investigated with this
analysis.

Johns et al. [1990] and Stansby [1998] discussed unidirectional steady water move-
ment over dune-like features with steep slopes. Due to the steep slopes, the focus is on
flow separation, which we do not expect for offshore sand waves with a smaller steep-
ness than dunes found in rivers. Fredsøe and Deigaard [1992] discuss the behaviour
of sand waves based on a model describing fully-developed sand dunes in rivers (see
also a.o. Hansen [1989]). Sand waves under the influence of oscillatory water move-
ment are schematised as bed forms formed under the influence of a unidirectional
steady current, with a modification for the reversing current. This is based on the
assumption made by Stride (1982). Therefore, periodic water motion is not taken
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directly into account. Furthermore, the model does not describe bed form evolution.
Richards and Taylor [1980] discussed flow and sediment transport characteristics for
more sandwave-like bed forms in a unidirectional steady flow, with milder slopes than
river dunes. In addition, they discuss the response of the seabed for various shapes of
the sand wave. Idier [2003] investigated sinusoidal sand waves for various amplitudes
with a numerical model for unidirectional steady flow conditions.

Assuming sand waves to be free instabilities of the seabed-water system, we more
or less understand the initial instability mechanism. However, the behaviour of finite-
amplitude offshore sand waves (especially for periodic water motion) is still not fully
understood. Here, we are interested in the evolution of the finite amplitude sand
waves and their stabilisation processes, together with their maximum height.

In Chapter 4, a numerical model has been developed and validated mathematically
with the help of the linear stability analysis discussed in Chapter 3. This model
enables the description of the entire evolutionary process of sand waves. Within this
chapter, we will investigate the behaviour of finite amplitude sand waves. It can give a
clue to the most important mechanisms, determining the stabilisation of the evolution
of sand waves and their saturation height for unidirectional steady flow and periodic
water motion. Furthermore, we consider what happens to the shape and migration
rates of sand waves when we allow them to become finite. Lastly, can we use this
information to simplify models describing sand waves?

First, the physics forming the basis of the used simulation model is discussed
briefly. For a detailed description of the model, we refer to Chapter 4. Next, the
processes for sand waves of finite extent are discussed for sinusoidal modes having
different amplitudes. Subsequently, we investigate the evolution of sand waves using
a fully coupled model for a unidirectional steady current based on data from the Gulf
of Cadiz, and for periodic water motion, aimed at describing North Sea conditions.
In the unidirectional steady flow case, we investigate the change in migration rate
during the evolution of a sand wave. Next, we investigate the effect of the different
parameters on the results. Subsequently, the impact of dredging a field of sand waves
is investigated. In the final section, we present the conclusions.

5.2 Description of the model set up

5.2.1 2DV Flow model

The model used in this chapter is the two-dimensional vertical (2DV) numerical simu-
lation model developed in Chapter 4. For completeness, we present the basic equations
forming the basis of the model.

Since the Coriolis force only slightly affects sand waves, we are allowed to omit for
simplicity the second horizontal direction. After making the shallow water approxi-
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Parameters Symbol Default value Dimension
Depth-averaged value velocity U 1 m s−1

Average water depth H 30 m
Kinematic eddy viscosity Av 1 · 10−2 m2s−1

Slip parameter S 8 · 10−3 m s−1

Gravitational acceleration g 9.8 m s−2

Power of transport b 5 · 10−1 −
Proportionality constant α 3 · 10−1 m−2 s
Bed slope factor λ1 6 · 10−3 m2 s−2

Bed slope factor λ2 3.33 −

Table 5.1: Typical values and dimensions of the parameters and variables used in the simulation
model.

Figure 5.2: Definition sketch of the model geometry. Fig. (a) shows the non-periodic set up.
Fig. (b) shows the usage of periodic boundary conditions. Here, the properties of the variables
at the inflow boundary are the same as at the outflow boundary.

mation, we obtain the 2DV shallow water equations:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −g

∂ζ

∂x
+

∂

∂z

(
Av

∂u

∂z

)
, (5.1)

∂u

∂x
+

∂w

∂z
= 0. (5.2)

The velocities in the x- and z- directions are u and w, respectively. The water
level is denoted by ζ and H represents the mean water depth. The level of the seabed
is represented by z = −H + h (see Fig. 5.2). Time is represented by t. The symbols
g and Av indicate the acceleration due to gravity and the vertical eddy viscosity,
respectively.

5.2.2 Sediment transport and seabed behaviour

Bed load transport is the mode of transport presumed dominant in offshore tidal
regimes. The following general bed load formula is used following Komarova and
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Hulscher [2000], modelling bed load transport as a function of the shear stress at the
seabed:

Sb = α|τb|b
[
τb − λ1

∂h

∂x
− λ2|τb|∂h

∂x

]
, (5.3)

with the volumetric bed load transport described by Sb and τb the shear stress at the
seabed by:

τb = Av
∂u

∂z

∣∣∣∣
z=−H+h

, (5.4)

and with:

α =
8γ

(s − 1)g
, λ1 =

3Θg(s − 1)d
2γ tan φs

, λ2 =
1

tan φs
. (5.5)

Hereby, Θ is the critical Shields parameter modelled by a constant of 0.047, s is
the relative density of sediment equal to 1.65 and γ takes into account that during
a tidal cycle sediment is not transported when the critical shear stress is too low.
For unidirectional steady flow, this parameter is equal to 1, otherwise estimated at
0.5. The grain diameter is denoted by b and φs is the internal friction angle of the
bed with tan φs = 0.3. The power of transport, represented by b, is set at 0.5 and
the proportionality constant, denoted as α, is about 0.3 s m−2. The scale factors
for the bed slope mechanism are λ1 and λ2, taking directly into account that sand is
transported more easily downhill than uphill. A threshold of sediment motion is not
explicitly taken into account at this point (Table 5.1).

The sediment balance, which couples the flow model (Eqns. (5.1) and (5.2)) with
the sediment transport model Eq. (5.3), calculates the position of the seabed h based
on the principle of conservation of mass as a function of time t:

∂h

∂t
= −∂Sb

∂x
. (5.6)

5.2.3 Boundary conditions at the free surface and seabed

The boundary conditions at the water surface (z = ζ)(see Fig. 5.2) are defined as
follows:

∂ζ

∂t
+ u

∂ζ

∂x
= w, (5.7)

∂u

∂z
=

τw

Av
. (5.8)
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in which τw describes the wind induced shear stress at the sea surface. The vertical
velocity component at the bed (z = −H +h) is described by the kinematic condition:

∂h

∂t
+ u

∂h

∂x
= w. (5.9)

The horizontal flow components at the seabed are modelled with the help of a partial
slip condition (S is the slip parameter controlling the resistance at the seabed). The
boundary condition couples the resistance at the seabed with the water movement
across the seabed:

Av
∂u

∂z
= Su. (5.10)

5.2.4 Inflow and outflow boundary conditions

In this chapter, we investigate the non-linear behaviour of sand waves with periodic
and non-periodic boundary conditions in the horizontal direction.

For the non-periodic approach (see Fig. 5.2 (a)), an estimate of the water level is
supplied to the model at the outflow boundary. Furthermore, the derivatives in the
horizontal direction for the horizontal and vertical velocities are set to zero at the
outflow boundary.

A constant discharge together with a velocity profile in the vertical plane is pre-
scribed at the inflow boundary. Two possible origins of steady flow can be investi-
gated. These are (I) a wind driven current and (II) a current induced by a pressure
gradient. The vertical structure for each of these cases is:

I : ur =
τw

Av

(
H +

Av

S
+ z

)
, (5.11)

II : ur = P

(
1
2
z2 − Av

S
H − 1

2

)
. (5.12)

With P a parameter determining the magnitude of the pressure gradient. Fur-
thermore, we are able to impose a time-dependent signal at the inflow boundary to
simulate tidal motion. However, if we provide an incorrect estimate of the water level
downstream, we supply false information to the system. This is no problem from a
physical point of view, since we do not expect that a small discrepancy in the wa-
ter level will affect the position of the seabed. However, numerically this can pose
difficulties. To overcome this problem, we can prescribe the pressure gradient ( δζ

δx )
directly in the momentum equation (Eq. (5.1)). In this case, no slope will develop
in case of a flat bed, since the pressure gradient is present throughout the domain
(not only at the inflow boundary). Note, that we still have a free surface. For a flat
seabed, the velocity profile in the vertical is then equal to Eq. (5.12) throughout the
domain. Prescribing the pressure gradient in this way is equivalent to the basic state
in the linear stability analysis (Chapter 3), where the basic state is valid throughout
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Figure 5.3: Changes sand wave profile. The following aspects are shown: (a) growth, (b)
migration, (c) change in horizontal asymmetry and (d) change in vertical asymmetry.

the horizontal domain. At the outflow boundary, we can then prescribe a water level
equal to zero, being an accurate estimate of the analytical solution. If we now im-
pose a bed form on the seabed, we need to keep the sand wave far enough from the
outflow boundary, to minimize the interaction between the boundary and the sand
waves under investigation.

When using periodic boundary conditions (see Fig. 5.2 (b)) the values of the
variables at the inflow boundary are equal to the values of the variables at the outflow
boundary. We can choose between either a wind stress, a pressure gradient or a
combination as the forcing mechanism in the water motion. The pressure gradient is
again imposed directly in the momentum equation as described above. The existence
of a net slope in the domain in the water level would be in contradiction to the usage
of periodic boundary conditions.

The physical interpretation of periodic boundary conditions is that we have a train
of identical sand waves next to each other. The limitation of this approach is that we
introduce a length scale in the physical system due to the selection of the length of
the domain. Therefore, the wavelengths selected on the intermediate term are limited
(only the wavelength of the fastest growing mode and its higher harmonics).

While investigating sand waves in the non-linear regime due to a unidirectional
steady current we will have to deal with sand wave evolution, change in shape and
migration. Hereby, we expect the sand wave to become asymmetric. However, if
we look at periodic water motion — more typical for offshore locations — the bed
forms will not migrate and remain symmetrical in the horizontal. This simplifies the
analysis, since the only response of the system remaining to observe are the evolution
of the sand wave and the change in shape (see Fig 5.3).

We simulate unidirectional tidal motion with a unidirectional block current. It
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Figure 5.4: Water motion optional in the simulation model. Fig. (a) shows a unidirectional steady
current. Fig. (b) shows time-dependent water motion, in this case sinusoidal tidal motion. In
Fig. (c) a block current can be found simulating periodic tidal motion by looking at two steady
currents (a) in opposite direction.

is based on two unidirectional steady currents in opposite direction (see Fig. 5.4
(a): unidirectional steady flow and Fig. 5.4 (c): unidirectional block current). The
growth rates for a range of wavelengths for a block current can be found in Fig. 5.5,
indicating the wavelength of the fastest growing mode (about 500 m) lies in the same
order of magnitude of that of sinusoidal tidal motion (see Chapter 4). Furthermore,
the numerical effort of investigating tidal motion with a block current is much smaller
than for sinusoidal tidal motion (see Fig. 5.4 (b)). This is especially true when doing
long-term morphological calculations.

We will investigate two cases:

• a unidirectional steady current with a depth-averaged velocity of 1 m s−1 in-
duced by a pressure gradient;

• and a unidirectional block current with a depth-averaged velocity of 1 m s−1

based on a pressure gradient, from here on referred to as block current.

5.3 Sand waves of finite extent, a morphostatic
approach

We will start by imposing a sinusoidal sand wave for a range of amplitudes on the
seabed and investigate the properties of the seabed-water system. Hereby, we do not
close the morphodynamic loop, which would allow the seabed changes to influence
the water motion (morphostatic) (see Fig. 5.6). This is the first step to understand
the non-linear behaviour before we start with calculations with a fully coupled model
(morphodynamic) in paragraph 5.4.
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Figure 5.5: Growth rate for small amplitude sand waves in a unidirectional block current based
on a pressure gradient with a depth-averaged velocity of 1 m s−1 for a range of wavelengths.

Figure 5.6: Not closed morphological loop.

5.3.1 Unidirectional steady current

First, we investigate the behaviour of sinusoidal sand waves with different amplitudes
for a unidirectional steady current in an average water depth of 30 m. The value of
the slip parameter S is set at 0.01 m s−1 and the eddy viscosity Av at 0.03 m2 s−1,
based on the calculations in Chapter 4 for dune-like bed forms.

We see in Fig. 5.7 (a) and (b) that the maximum shear stress, located at the top
of the sand wave, increases for larger amplitudes. The shear stress on the stoss side
of the sand wave, where the slope is maximal, at z = −H (see also Fig. 5.2), increases
initially for larger amplitudes. This increment can be seen until an amplitude of about
4 m. For larger amplitudes, this shear stress starts to decrease, indicating that less
sand can be transported upwards towards the crest of the sand wave (see also Richards
and Taylor [1980]). At the same time, we find a sharper gradient in the shear stress.
This is possibly the result of the sheltering effect of one sand wave behind another.
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Figure 5.7: Shear stresses and velocities at the seabed as a function of the amplitude of a
sinusoidal sand wave for a unidirectional steady current of 1 m s−1. Fig. (a) and (b) show the
shear stress, Fig. (c) the horizontal velocity u and Fig. (d) the vertical velocity w at the top
(dotted line), in the trough (solid line) and on the stoss side of the sand wave at z = −H, where
the slope is maximal (dashed line). An amplitude of zero corresponds with a flat bed.

The fact the shear stress at at the stoss side at z = −H increases initially, supporting
the evolution of sand waves, and decreases for larger amplitudes is an indication of a
mechanism supporting sand wave saturation for steady flow situations. The minimum
shear stress located in the trough becomes negative for these very large amplitudes,
indicating flow separation.

The current set up of the simulation model is not able to describe flow separa-
tion due to the usage of the shallow water approximation. Therefore, for very large
amplitudes the model is not valid. To describe flow separation the pressure in the do-
main needs to be taken explicitly into account (see a.o. [Johns et al., 1990], [Fredsøe
and Deigaard, 1992] and [Stansby, 1998]). However, sand waves in this context are
not expected to attain these heights. We are investigating sand waves in an offshore
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Figure 5.8: Shear stress (τ) and change in bed level for a sinusoidal sand wave pattern with an
amplitude of 1 m (solid line), 3 m (dashed line) and 5.5 m (dotted line) shown in Fig. (c). A
unidirectional steady current is investigated with a depth-averaged magnitude of 1 m s−1. Fig.
(a) shows the shear stress at the seabed. Fig. (b) shows the seabed change, which is more non-
linear than the pattern of the shear stress due to the non-linear nature of the bottom evolution
equation.

environment and these bed forms in general are not very high and steep (vertical
change of metres along a horizontal domain of hundreds of metres). We believe that
the latter is due to the more symmetrical water motion instead of the unidirectional
steady flow found in rivers.

For the horizontal velocity u and vertical velocity w, we find similar trends (see
Fig. 5.7 (c) and (d)). The minimal horizontal velocity in the trough also becomes
negative for large amplitudes indicating flow separation as well. However, the vertical
velocity at the stoss side of the sand wave at z = −H keeps on increasing for larger
amplitudes (Eq. (5.9)).

In a unidirectional steady current we expect the sand wave to be asymmetrical.
Therefore, the system is not in equilibrium since it requires a more asymmetrical bed
form. This can be seen from the sedimentation downstream and erosion upstream
shown in Fig. 5.8 (b). We find for the small amplitude smooth functions of the shear
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stress and bed level change (see Fig. 5.8 for unidirectional steady flow and Fig. 5.10 for
a block current). However, for larger amplitudes we find higher harmonics in the shear
stress at the seabed attempting to make the pattern more capricious. The effect on
the smoothness of the seabed change (see Fig. 5.8 (b)) compared to the shear stress at
the seabed (see Fig. 5.8 (a)) is large since the bottom evolution equation (Eq. (5.6)) is
stronger non-linear than the water motion. Therefore, the seabed change shown here
should not be attributed entirely to the sand wave evolution and migration (especially
for the sand waves with large amplitudes).

5.3.2 Block current
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Figure 5.9: Net shear stresses and velocities at the seabed as a function of the amplitude of a
sinusoidal sand wave for a block current with an amplitude of 1 m s−1. Fig. (a) shows the shear
stress, Fig. (b) the horizontal velocity u and Fig. (c) the vertical velocity w at the top (dotted
line), in the trough (solid line) and where the slope of the sand wave is maximal at z = −H
(dashed line) (coinciding with the solid line). An amplitude of zero corresponds with a flat bed.

Fig. 5.9 shows the net values of the shear stress and flow velocities at the seabed,
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Figure 5.10: Shear stress (τ) and change in bed level for a sinusoidal sand wave pattern with an
amplitude of 1 m (solid line), 3 m (dashed line) and 5.5 m (dotted line) shown in Fig. (c). Here
a block current is investigated with a depth-averaged magnitude of 1 m s−1. Fig. (a) shows the
shear stress at the seabed. Fig. (b) shows the seabed change, which is more non-linear than the
pattern of the shear stress due to the non-linear nature of the bottom evolution equation.

over one period for a block current The principal difference with Fig. 5.7, besides the
fact that these are net values, is that the net shear stress at z = −H, where the slope
is maximal, does not show a decrease for larger sand wave amplitudes. Furthermore,
the vertical and horizontal velocities, u and w, show a net flux of water oriented
towards the top of the sand wave for all amplitudes.

For a block current, the sinusoidal shape of the investigated sand waves forms a
better first approximation, since we expect a symmetrical bed form in the horizontal
direction. Looking at Fig. 5.10 (b) we can see the sand wave shows a tendency to
become more sharp-crested than the sinusoidal shape. The top of the sand wave
intends to keep growing, whereby the area near the top wants to erode for large
amplitudes. The troughs show little change in time. Based on this analysis, we
expect for this case sand waves with elongated troughs and relatively sharp crests
(see also Fig 5.1 (b)).
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Figure 5.11: Growth rate sand wave evolution. Fig. (a) shows the average growth of the top of
a sand wave as a function of amplitude based on a domain consisting of 3 sand waves with a
block current (solid line) and a unidirectional steady current (dashed line). Fig. (b) shows the
amplitude evolution of a sand wave based on the Landau equation (solid line) (see also Schielen
[1995], Knaapen and Hulscher [2002] and Morelissen et al. [2002]) and the evolution based on
the determined growth rates for the steady current (dashed line). The vertical scale denotes the
relative amplitude (amplitude/average water depth). The horizontal axis encompasses the time
in years.

5.3.3 Discussion

In Fig. 5.11 (a) an estimate of the growth rate for a range of amplitudes is shown,
based on the imposed sinusoidal sand waves in a unidirectional steady current and
block current. It is an estimate since the sinusoidal shape is not the natural shape,
and the difference with the actual shape becomes more clear for larger amplitudes, as
can be seen by the asymmetry in the vertical and horizontal of the different properties
in the system (see Fig. 5.8 and Fig. 5.10). For large amplitudes we see the top of the
sand wave intending to grow, while the rest of the area surrounding the top shows a
tendency to erode. This poses a problem to define the actual growth rate, since we
do not want that the desire of the imposed bed form to change its shape is confused
with the actual evolution.

We chose to take the average seabed change of the top half of the sand wave as
a measure for its evolution. Hereby, the position of the trough changes less than the
position of the crest for larger amplitudes. This gives us the values of the growth
rate in Fig. 5.11 (a), which can be rewritten as the amplitude as a function of time
resembling the amplitude evolution based on the Landau equation (see also Schielen
[1995], Knaapen and Hulscher [2002] and Morelissen et al. [2002]) (see Fig. 5.11 (b)).

The growth rate appears to decrease for large amplitudes. The slope term in
Eq. (5.3) is assumed to play the most important role here. The magnitude of the
slope increases for larger values of the amplitude. The slope term balances with
the shear stress in the sediment transport equation. An increasing slope term will
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decrease the amount of sediment transported uphill. Furthermore, the shear stress at
the seabed in the case of unidirectional steady flow increases if the amplitude increases
slightly. However, from a certain amplitude on, the shear stress at the stoss side (at
z = −H) starts to decrease, aiding the slope term to decrease the growth rate. This
process was not found for periodic water motion. In fact, for the block current, the
change in the gradient of the sediment transport Eq. (5.3) is due to the slope term,
which appears to be able to counteract the increasing shear stress at the seabed for
larger amplitudes, such that it reduces the growth rate of the sand wave.

5.4 Sand wave evolution, a morphodynamic
approach

In this section we will investigate the evolution of sand waves with a fully coupled
model. This means that the seabed is allowed to change during the long-term mor-
phological calculations (see Fig. 5.12). This will omit the restriction of the sinusoidal
shape discussed above.

Figure 5.12: Closed morphological loop.

Hereby, we will use periodic boundary conditions. Using this approach, we choose
the length of the domain to be equal to the initially preferred wavelength based
on linear theory. During the morphological calculations this wavelength is fixed.
Therefore, the model is not allowed to alter the wavelength of the sand wave during
its evolution. However, this is a common approach. Other related studies into the
dynamics of bars in rivers (see Schielen et al. [1993]) and shoreface-connected sand
ridges (see Calvete et al. [2002]) have shown that the initially most preferred mode
can play a dominating role in the non-linear regime. Furthermore, this assumption
is supported by bathymetric data containing offshore sand waves. The data shows
that the ratio of the height of the sand waves compared to the average water depth is
relatively small (see Terwindt [1971], Van Alphen and Damoiseaux [1989], Van Maren
[1998], Knaapen et al. [2002] and Morelissen et al. [2002]). This indicates the system
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Parameters Symbol A B C Dimension
Mean grain size diameter d 4.15 5.37 0.58 10−4 m
Steady current velocity U 1.5 0.8 0.2 m s−1

Average water depth H 19 21 22 m
Range sand wave length Lsw 100/850 50/4000 50/350 m
Mean sand wave length Lsw 275 190 145 m
Range sand wave height hsw 1/11 1/6 1/5 m
Mean sand wave height hsw 3.75 2 1.9 m
Asymmetry ratio - 1/5.6 1/7.5 1/6 -

Table 5.2: Values for the different areas under investigation of the Gulf of Cadiz.

is not strongly non-linear, but weakly non-linear. Therefore, we expect a maximal
difference in wavelength within the same order of magnitude as the non-linearity,
which is about 10-20%.

We will start by investigating unidirectional steady flow, with the Gulf of Cadiz
as a case study, and then investigate periodic water motion focussing on North Sea
conditions.

In the previous section we were looking at sinusoidal sand waves, whereby it is
common to refer to the magnitude in the vertical using the term amplitude. However,
in this section the bed forms are not sinusoidal anymore. Therefore, we will use the
term sand wave height, defined as the distance from the trough to the top. In the
previous section the height is equal to two times the amplitude.

5.4.1 Unidirectional steady flow - The Gulf of Cadiz

Sand waves in the Gulf of Cadiz

In Spain in the Gulf of Cadiz sand wave like bed forms in a predominantly unidirec-
tional steady flow are found in average water depths of 20 metres on a continental
shelf of about 30 km wide (see Fig. 5.13). Due to the nature of the tidal motion in
combination with the shape of the coastal environment, the ebb and flood parts of
the tidal motion pass over different areas in the Gulf. The wavelengths and heights
of the sand waves are typically 150-300 m and 2-4 m, respectively. Symmetrical and
asymmetrical sand waves are found. In Table 5.2 the characteristics can be found
based on one measurement of the bathymetry. Therefore, no information concerning
their migration rates is available. Rommel et al. [2003] showed that it is possible
to predict sand wave migration with the help of the model presented in Chapter 3.
Here, we will use this data to investigate sand wave evolution and saturation.

Three zones have been differentiated according to the assumed migration direction
of the sand waves based on their asymmetry, which is in the direction of the water
motion. Zone A is located south of Barbate High. Zone B is situated at Barbate
High and zone C can be found in the Northern part of the shelf (see Fig. 5.13).
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Figure 5.13: Enlargement of study area consisting of four zones A, B and C located at 36
degrees latitude and -6 degrees longitude. The arrows denote the current and presumed migration
direction of the sand waves. The figure is adapted after Lobo et al. [1999] and Munoz-Perez et
al. [2001].

In zone A the largest sand waves have average wavelengths of about 275 m and
average heights of 3.75 m (see Table 5.2). In zone B we find the most asymmetrical
sand waves in the Gulf. Hereby, the asymmetry is defined as the horizontal length
of the lee side divided by the horizontal length of the stoss side. Between these two
zones we can distinguish a transitional zone where sand waves are symmetrical. Zone
C contains relatively small sand waves, with wavelengths of about 145 m and heights
with a maximum of 2 m, with rounded and eroded crests.

Water motion in the Gulf of Cadiz

The current patterns found in the Gulf of Cadiz are complex. Two main current
patterns can be identified. The first is an inflow south eastward of the North Atlantic
water in the direction of the Mediterranean Sea over the shelf domain [Lobo et al.,
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Figure 5.14: Estimated wavelengths and coinciding migration rates for three zones in the Gulf
of Cadiz. The three figures above show the wavelengths of the fastest growing modes according
to the linear analysis for zones (a), (b) and (c). The flow conditions go from highly energetic in
zone A to low energy conditions in zone C. The figures below show the corresponding migration
rates in the different zones.

1995] (Zones B and C). The second is a north eastward outflow from the Mediter-
ranean sea [Nelson et al., 1999] due to the density contrast between this water and the
fresh water coming from the Atlantic. This density contrast enforces a reverse estu-
arine circulation, in which the Mediterranean water flows westward along the seabed
under the eastward flowing Atlantic water (Zone A).

This distinguishes the area from the North Sea where periodic water motion is
dominant, which is sometimes modified by a steady component. Therefore, in the
Gulf of Cadiz we find offshore sand waves existing in unidirectional more or less
steady flows.

Figs. 5.14 (a), (b) and (c) show the wavelengths of the fastest growing modes
according to the linear stability analysis for zones A, B and C. This for a range
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Figure 5.15: Evolution and migration of a sand wave in zone C of the Gulf of Cadiz. Fig (a)
shows sand wave evolution in a unidirectional steady current using periodic boundary conditions.
We see the development of the seabed (on the vertical axis in metres) as a function of time
(yr). The total period calculated is about 100 years. Hereby, we show the values only in the grid
points, giving the appearance of modulations due to the higher density of the grid points near
the boundaries. Therefore, this is not a physical process. The initial amplitude of the imposed
perturbation is 1 mm. It takes about 30 years to evolve from 10% to 90% of the saturation
height. This slow evolution coincides with the moderate flow conditions. Fig. (b) shows the
corresponding migration rate during the evolution of the sand wave.
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Figure 5.16: Cross section of a sand wave during its evolution in zone C of the Gulf of Cadiz.
Fig. (a) shows the evolution in time of the seabed for a unidirectional steady current in zone C
of the Gulf. We start the figure when the disturbance has an amplitude of 0.1 m, which then
saturates in about 60 years at a total wave height of about 5 m, which is 22% of the average
water depth. Fig. (b) shows the position of the seabed for the fully-developed sand wave (see
also Fig. 5.1 (a) and Fig. 5.3 (c)).

of values of the slip parameter S and the eddy viscosity Av. These two variables
are considered to be the most difficult to estimate. The rest of the values of the
parameters can be found in Table 5.2. The wavelengths calculated are slightly longer
than the actual wavelengths found. Since the order of magnitude is correct and the
available data is limited we can conclude that the approach is successful, indicating
the bed forms found in the Gulf of Cadiz can be free instabilities of the system.

There was no data available whether or not the sand waves migrate. Based on the
results described here, we can expect that the sand waves are migrating (see Fig. 5.14
(d), (e) and (f)). In zone A the sand waves are in fact expected to migrate very fast
due to the large current velocities. Zone C has migration rates which correspond
more to North Sea conditions. Here, the magnitude of the depth-averaged current is
also of about the same order of magnitude as the steady part found in the North Sea.

Sand wave evolution

In Fig. 5.15 and Fig. 5.16 (a) the development of the seabed in zone C as a function
of time is presented. We started with the fastest growing mode determined with
the linear stability analysis (Chapter 3) for a steady current induced by a pressure
gradient and a value of the slip parameter S of 0.04 m s−1 and the eddy viscosity Av

of 0.02 m2 s−1 (see also Table (5.1) for the rest of the values of the parameters and
Fig. 5.14).

We can identify the evolution of the sand wave pattern. In Fig. 5.15 (a) the
positions of the seabed in all the grid points are plotted as a function of time. The
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distortion apparent is not a numerical error or higher harmonic in the seabed topogra-
phy. This is due to the narrowing grid density near the boundary of the computational
domain, where the sand waves passes through while migrating. The evolution of the
height of the sand wave according to the current model is therefore a smooth line as
Fig. 5.11 (b).

The bed form initially develops slowly, after which the amplitude increases quicker,
equivalent to the exponential solution of the linear stability analysis. Next, the growth
rate diminishes (due to the change in balance between the shear stress at the seabed,
transporting sediment upward and the slope term in the sediment transport formula
(Eq. (5.3)) and saturation is found. It takes about 30 years to develop from 10%
to 90% of the saturation height of about 5 m, which is 22% of the average water
depth. The found height and wavelength of the sand waves lie within the range of
the observations. However, they are above average. Hereby, we should note the slope
effect becomes more important for sand waves with smaller wavelengths. Therefore,
a smaller wavelength of the fastest growing mode should result into a smaller sand
wave height.

The slopes found are still small (the maximum is about 4%). Therefore, no flow
separation occurs. This coincides with the observation that the bed forms in this zone
C are more symmetrical than in the other zones A and B. The fully-developed bed
pattern is migrating with a migration rate of about 36 m yr−1. The cross section
shown in Fig. 5.16 (b) is the one after the sand wave has fully developed. However,
the asymmetric shape is not yet in equilibrium, and changes further. See below for a
more detailed discussion on sand wave migration.

Similar calculations have been performed for zones A and B for different values of
the slip parameter S and the eddy viscosity Av. However, for all cases the asymmetries
of the bed forms become so large during their evolution, that we were not able to
describe their entire evolution without flow separation. This is due to the larger shear
stresses (due to the higher current velocities). To enable the description of these bed
forms, the model needs to be modified as discussed above. The strong asymmetry (in
the horizontal) the simulation model predicts coincides with the asymmetry of the
sand waves found in zones A and B.

5.4.2 Periodic water motion - The North Sea

Fig. 5.17 and Fig. 5.18 (a) show the evolution of a sand wave for a typical North Sea
location. This for a value of the slip parameter S of 0.008 m s−1, an eddy viscosity
Av of 0.005 m2 s−1 and a average water depth of 30 m. The value of λ1 is set at
0.006 and we investigated a block current based on a pressure gradient inducing a
depth-averaged velocity of 1 m s−1. For the rest of the values of the parameters see
Table 5.1.

We started calculations with a sinusoidal sand wave with a wavelength coinciding
with the fastest growing mode, determined with the simulation model. The initial
amplitude of the bed form is 0.025 m. The seabed develops initially slowly. However,
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Figure 5.17: Sand wave evolution in a block current using periodic boundary conditions. We see
the development of the seabed (on the vertical axis in metres) as a function of time (yr). We
start the simulation with the fastest growing mode for a slip parameter of 0.008 m s−1 and an
eddy viscosity of 0.005 m2 s−1. The initial amplitude of the imposed sand wave is 0.025 m. It
takes about 20 years to evolve from 10% to 90% of the saturation height.

it takes only 20 years to develop from 10% to 90% of the saturation height. Next,
the growth rate of the sand wave diminishes again, due to the increased importance
of the slope effect with respect to the uphill directed shear stress for larger heights.
The height of the fully-developed sand wave is about 7.8 m, which is 26% of the
average water depth. This height lies within the range seen in the North Sea (see also
paragraph 3.9). The water motion still has residual circulation cells oriented towards
the crest (see Fig. 5.19). Furthermore, the sand wave does not migrate and shows
no asymmetry in the horizontal. It resembles a sinusoidal pattern with a slightly
elongated trough.

5.5 Sand wave migration

Fig. 5.15 shows the evolution of a sand wave in zone C of the Gulf of Cadiz as a
function of time (see also Table 5.1). Hereby, we are interested in the migration rate
obtained with the linear stability analysis (Chapter 3) compared to the migration
rates for finite amplitudes.

The migration rate is defined as the time it takes for the lee side of the sand wave
at z = −H to migrate one wavelength. This definition is chosen since we are looking
at a unidirectional steady current, inducing an asymmetric shape not equal to the
sinusoidal sand waves investigated with the linear stability analysis. The migration
rate decreases slightly, from 44 m yr−1 for an amplitude of 1 mm to 36 m yr−1 for
the fully-developed sand wave. This means an 18% difference between the result from
the linear stability analysis and the fully-grown sand wave.

Therefore, the linear stability analysis provides a good estimate of the migration
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Figure 5.18: Cross section of a sand wave during its evolution and its final shape in the North
Sea. Fig. (a) shows the evolution in time of the seabed for a block current representing a typical
North Sea location. We start with a disturbance with an amplitude of 0.025 m, which saturates
in about 60 years at a total wave height of about 7.8 m, which is 26% of the water column. Fig.
(b) shows the position of the seabed for the fully-developed sand wave.

rate, even though the analysis is based on infinitely small sinusoidal sand waves.
Furthermore, this is as can be expected from a weakly non-linear problem where we
expect the change in sand wave migration to be of the order of the relative sand wave
height.

5.6 Sensitivity analysis

5.6.1 Slope term

In Eq. (5.3) we can see the slope effect is modelled by two separate terms with the
parameters λ1 and λ2. In the linear analysis, only the sum of the two terms is
important, since the amplitude of the sand waves is very small. However, for larger
sand wave heights the effect of the different terms are different, since the shear stress
on the seabed changes during the evolution of the sand wave.

In Fig. 5.20 (a) the profile of a fully-grown sand wave for the typical case calculated
for a block current (see Table 5.1 and Figs. 5.17 and 5.18) can be seen. Fig. 5.20 (b)
shows the profile using the same value of the slope term for the small amplitude sand
wave case, giving the same wavelength for the fastest growing mode, but based on
λ1 (λ1 = 0.00896 and λ2 = 0). This gives a more peaked profile of the sand wave
resembling the pattern found in the North Sea in Fig. 5.1 (b), with more elongated
troughs and sharp crests. The height is about the same as in Fig. 5.20 (a). If we
set λ1 to zero and base the slope term for the instability mechanism on λ2 (λ1 = 0
and λ2 = 10.1) we obtain Fig. 5.20 (c). Hereby, we have to mention that just before
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Figure 5.19: Contour plot of the horizontal residual current for a block period during the evolution
of a sand wave. The sand wave height during its evolution from top to bottom is 0.05 m, 2 m,
4 m, 6 m, and 7.8m. The solid lines depict the positive, the dashed lines the negative and the
dotted lines a residual flow equal to zero. The position of the water surface and seabed are z = 1
and z = −1, respectively.

reaching its maximum height, flow separation occurred. This is due to the larger
attained height of 10 m. For illustrational purposes we plotted this profile to show
the more smooth shape compared with Fig. 5.20 (a) and Fig. 5.20 (b) due to the
different more diffusive character of the slope term containing λ2, which can already
be identified during the evolution.

Which of the two terms dominate depends on the magnitude of the shear stress
and on the magnitude of the slope parameters. We expect for relatively higher shear
stresses more peaked sand waves, and for more moderate conditions smooth sand
waves.
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Figure 5.20: Fig. (a) shows the shape of the fully-developed sand wave induced by a block
current for a typical North Sea location with a λ1 of 0.006 and λ2 of 3.33. Fig. (b) and (c)
show fully-developed sand waves for the same conditions except for a λ1 of 0.00896 and λ2 of 0
in (b) and λ1 of 0 and λ2 of 10.1 in (c). See also Figs. 5.3 (a) and (d).

5.6.2 Viscosity and resistance at the seabed

We can test the effect of the magnitude of the eddy viscosity Av and slip parameter
S on the behaviour of finite amplitude sand waves, by varying their values. Hereby,
we need to calculate, for each combination of S and Av, the wavelength of the fastest
growing mode.

For larger roughness of the seabed, we find shorter wavelengths of the sand waves
due to the increased shear stress at the seabed. The growth rate of the sand waves
for these larger values of the slip parameter is larger (see Figs. 5.21 (a), (c) and
(e)) due to the combination of the higher shear stress and the shorter wavelengths
(smaller volume). The maximum height increases as well (see Figs. 5.21 (b) and (d)).
Therefore, the increase in shear stress dominates the increase in slope effect due to
the shorter wavelengths. The large resistance at the seabed in Figs. 5.21 (e) and (f))
caused the flow to separate from the sand wave crest. This effect was enhanced by
the sharper gradient in the velocity profile.

Longer fastest growing modes are found for larger values of the eddy viscosity
(Chapter 3) (see Fig. 5.22). The rate of the evolution increases as well (see Figs. 5.22
(a), (c) and (e)). Starting for the same amplitude of 0.025 m, we find fully-developed
sand waves after about 90, 60 and 40 years for values of the eddy viscosity Av of 0.05,
0.01 and 0.015 m2 s−1, respectively. Furthermore, the maximum height of the sand
waves increases almost linear as a function of the eddy viscosity (see Figs. 5.22 (b),
(d) and (f)). This increase in wave height is partly due to the longer fastest growing
modes, which have relatively less inhibitions by the slope effect during their evolution.
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Figure 5.21: The three columns show the evolution of the sand wave in time (above) and the
cross section of the fully-grown sand wave (below) for three values of the slip parameter S: 0.005,
0.008 and 0.011 m s−1.

5.6.3 Sand wave height and average water depth

Wilkens [1997] investigated with the help of a GIS several characteristics of sand waves
and found an almost linear relationship between sand wave height and the average
water depth (see Fig. 5.23). This linear relationship holds for the range of average
water depths in which sand waves are believed to exist [Hulscher and Van den Brink,
2001].

We investigated the effect of the water depth by considering a range of depths.
Hereby, we investigated for each water depth the same magnitude of the pressure
gradient. Therefore, the magnitude of the depth-averaged velocity decreases for larger
water depths. For each case we needed to calculate the wavelength of the fastest
growing mode, which was longer for larger water depths (see Fig. 5.24 (a)).

The range of water depths investigated starts at 10 m, where we expect other
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Figure 5.22: The three columns show the evolution of the sand wave in time (above) and the
cross section of the fully-grown sand wave (below) for three values of the eddy viscosity Av:
0.05, 0.01 and 0.015 m2 s−1.

processes such as suspended sediment and wind waves to play an important role. It
ends at 55 m, where according to Fig. 5.23 the sand waves are very small.

With the current parameter settings, flow separation occurs for average water
depths less then 25 m. Therefore, the heights shown in Fig. 5.24 are only indications
of the maximum profile of the sand wave in these shallower waters. However, we do
not find sand waves of these magnitudes in nature at these water depths. It is possible
the parameter settings for this region should be different. Furthermore, aspects such
as suspended sediment and wind waves influencing sediment transport are assumed
to play an important role in the saturation mechanism under these conditions. These
aspects have not yet been incorporated in the model.

At larger water depths, we see that the maximum height for a fixed pressure
gradient remains about the same. The wavelengths become longer, and the slope
term only starts playing a role in the saturation when the heights are large. The
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Figure 5.23: (a) shows the sand wave height (m) distribution over the average water depth (m)
as a function of the average sand wave height over a depth-interval [Wilkens, 1997]. For small
water depths, no sand waves occur since other processes are assumed to become relevant. For
large water depths, also no sand waves occur. Possibly, due to the low shear stresses, initiation
of motion is not achieved. (b) shows the relative sand wave height (m) over the average water
depth (m) (height/average water depth) as a function of the average sand wave height over a
depth-interval.

relative sand wave height shown in Fig. 5.24 (c) coincides very well with Fig. 5.23
(b). However, the absolute heights remain large for larger average water depths. The
position of the water surface appears not to encompass the mechanism to explain
the absence of sand waves for larger water depths (see Fig. 5.23). However, Fig. 5.24
coincides better with the idea that the role of the position of the free surface is of lesser
importance when the average water depth is of the same order or larger compared to
the Stokes layer thickness (the boundary layer).

5.7 Dredging

In Fig. 5.25 we investigated the response of dredging the seabed containing fully-
developed sand waves for the typical North Sea location (see Fig. 5.17). We will
dredge the top 5 m of an infinitely wide field of sand waves (fully developed sand



116 Chapter 5. Finite amplitude sand waves

0 10 20 30 40 50 60
0

200

400

600

800
(a)

average waterdepth (m)

w
av

el
en

gt
h 

(m
)

0 10 20 30 40 50 60
0

2

4

6

8

10
(b)

average waterdepth (m)

sa
nd

 w
av

e 
he

ig
ht

  (
m

)

0 10 20 30 40 50 60
0

20

40

60

80

100
(c)

average waterdepth (m)

he
ig

ht
/a

ve
ra

ge
 w

at
er

de
pt

h 
(%

)

Figure 5.24: Fig. (a) wavelength (m) of the fastest growing mode for a range of water depths,
based on a block current. Fig. (b) shows the maximum sand wave height calculated Fig. (c)
shows the relative sand wave height ( height

average water depth
∗ 100%). For average water depths

smaller than 25 m, we encountered flow separation for this parameter setting (dotted part).

wave to be dredged can be found in Fig. 5.25 (a) (solid line)), resulting in a bed form
after dredging (dotted line). Furthermore, after dredging, the average seabed is 1.5
m lower.

The initial profile of the seabed to start calculations after dredging is smooth,
since we expect that the rough edges and other disturbances in the profile, can be
seen as features having small wavelengths. These small scale features are dampened
on a very short time-scale compared to the timescale of sand waves (according to
linear theory (see Chapter 3)).

The development of the trough and top of the dredged sand wave can be seen in
Fig. 5.25 (b). The dredged sand wave recovers in a matter of a decade. The top of
the fully-developed sand wave is about 1.5 m lower than of the original profile (solid
line Fig. 5.25 (a)).

Here, we made the assumption that the wavelength of the sand wave remains the
same after dredging. Based on the linear theory, we expect that the wavelength of
the fastest growing mode is longer than for the dredged sand waves. This is due tot
the larger average water depth, since sand was extracted from the system. However,
since a bed pattern with a relatively large height remains, we assume that the initial
response of the recovering sand wave based on the wavelength coinciding with this
bed form, is a good approximation of reality on the intermediate term (decades).

Since sand was extracted from the system, the crests of the fully-developed sand
waves after a decade will be 1.5 m lower than the original ones. On a longer time-
scale, it is possible the system will reorganise itself. Firstly, due to the fact that the
fastest growing mode of the system changes due to the changed average water depth.
Hansen et al. [2001] investigated experimentally the response of fully grown ripples,
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Figure 5.25: Dredging of sand waves and their recovery. Fig. (a) shows the original sand wave
(solid line), sand wave after dredging (dotted line) and recovered sand wave (dashed line). Fig.
(b) shows the recovery of the dredged sand wave in time.

on changes in forcing. The pattern and wavelength of the already existing ripples
almost did not change on the short term for changes in the forcing. This suggested
that reorganization of the patterns seems to take place on a longer timescale than the
formation of the ripples starting from a flat seabed. This process is different from
dredging and ripples are formed by a different mechanism than sand waves. However,
this work still forms an interesting analogy, indicating that the reorganisation of the
sand wave pattern after dredging will take place on a longer time scale than the
recovery of the sand wave.

Furthermore, here we are dredging an area which is infinitely wide. However, in
reality, this area will be more likely in the order of kilometres (at most). If the average
seabed is lowered over an area of kilometres, we are introducing a length scale in the
order of kilometres. Roos and Hulscher [2002] showed that this can cause patterns
similar to sandbanks on a longer timescale of centuries.

If the dredged sand obtained from the top of the sand wave is dumped in the
troughs, to increase the least depths, the average water depth does not change. The
evolution of the bed form can then be estimated with Fig. 5.17, assuming the dredged
sand wave is a free instability of the system. The time it takes for the sand wave to
become fully developed again, depends on the height of the remaining bed form. For
each metre dredged, a rough estimate of the resulting lowering of the height is two
meters. The time-scale for its recovery is then a matter of decades or less (See Table
5.3), after which the sand wave has regained its original height again.
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Dredging the top (m) Regeneration 90% (yr)
0.5 1
1 5.5

1.5 8
2 10

2.5 13
3 15

Table 5.3: Regeneration of sand waves after dredging. The material obtained by dredging the top
of the sand wave is deposited in the trough of the sand wave. Therefore, for each metre the top
of a sand wave is lowered (left column), the total remaining height decreases with two metres.
The right column shows the time it takes for the sand wave to regain 90% of its original height
for a typical North Sea situation (See paragraph 5.4.2). Note, that for this dredging strategy,
the average water depth does not change.

5.8 Conclusions

With the numerical model developed herein, we are able to allow a sand wave to
evolve and become saturated. They reach heights of 10-30% of the average water
depth. It takes about 20 years to evolve from 10% to 90% of the saturation height.
This coincides with values reported in the literature ([Knaapen and Hulscher, 2002]
,Idier [2003]).

The stabilisation mechanism found here causing sand waves to saturate is based
on the balance between the shear stress at the seabed and the fact that sediment
is transported easier downhill than uphill. Hereby, the shear stress is a function of
the resistance at the seabed and the eddy viscosity. The water motion has residual
circulation cells oriented towards the crest for periodic water motion for infinitely
small as well as fully-developed sand waves. At larger heights, the slope term reduces
the net amount of sediment transported upwards towards the crest, which causes the
sand wave to saturate.

The steepness found for fully-developed sand waves is less for periodic water mo-
tion than for sand waves in unidirectional steady flow. In the latter case, sand waves
can evolve without flow separation when flow conditions are moderate. For less mod-
erate flow conditions, the sand waves become too asymmetrical and require the de-
scription of flow separation processes.

The migration rate becomes only slightly smaller during the evolution from an
infinitely small to a fully-grown sand wave. This allows us to use the linear stability
analysis to estimate the migration rate.

An isolated hump at the scale of a sand wave is different from a field of sand
waves. For larger heights, the different sand waves seem to interact more, as can be
seen from the shear stress at the stoss side of the sand wave for unidirectional steady
flow.
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The resistance at the seabed and the viscosity are important factors determining
the value of the shear stress at the seabed. Therefore, they play an important part
in the balance between the shear stress and the slope term in the sediment transport
formula. Larger resistance at the seabed and larger values of the eddy viscosity
decrease the timescales and increase the saturation height.

For periodic water motion, the balance between the shear stress at the seabed and
the slope term determines not only the height but also the shape of the sand wave.
When the λ1 component of the slope term is larger than the λ2 component, the sand
wave also tends to be more sharp-crested. In the opposite case, the sand wave will
have a smoother shape.

The water depth plays an important role determining the wavelength of the fastest
growing mode. Therefore, the saturation height is correlated to the average water
depth, since it indirectly effects the influence of the slope effect on the sand wave
saturation. However, when the ratio of the average water depth divided by the Stokes
layer is larger, the relative effect becomes smaller.

Sand waves are able to recover in a matter of decades after they have been dredged.
The resulting saturation height depends on the amount of sand extracted and on the
location where the sand is dumped. When the sand is extracted from the system, the
resulting saturation sand wave height will be lower than when the dredged sand is
dumped in the troughs.
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5.9 Appendix

5.9.1 Numerical considerations

If we decrease the number of grid points used in the domain, we obtain numerical
oscillations near the boundaries. This is a known property of Chebyshev polynomi-
als approximating a solution. The accuracy in the interior is larger than near the
boundaries of the domain.

If we investigate a steady current over a group of sand waves, and we increase
manually the amplitude of the perturbation, the disturbance in the water move-
ment becomes larger with respect to a flat bed situation. The inflow boundary is
related directly to a flat bed situation with a gradient of zero in the seabed topog-
raphy (Eq. (5.10)). At the outflow boundary, (physically an open boundary) we find
boundary conditions stating that the derivatives in the horizontal are zero in the non-
periodic case. This is correct for a flat bed situation, but not if gradients in the flow,
seabed or water surface are present. Therefore, if we allow the height of a bed form
in the model to increase, it is possible the disturbance in the water movement starts
to conflict with the boundaries.

If we preserve a certain flat bed area adjacent to the boundaries, we can overcome
the physical part of this problem. One would expect that at least half a wavelength
is needed, since this is the minimum length scale of the residual cells responsible of
the formation of sand waves. If this approach is followed, the problem becomes more
local. We therefore need to increase the number of modes/grid points to maintain
the required maximum numerical error of the approximation. We find for a non-local
smooth problem, the accuracy increases significantly when increasing the number of
modes/grid points. However, if the problem becomes more local, we require a larger
number of grid points increasing the calculation time. The inclusion of splines should
improve the efficiency of the approximation method near the boundaries.
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Conclusions

”What are the key practical problems concerning sand waves and their coinciding time
and length scales?”

Sand waves pose a threat to a range of offshore activities. The combination of their
timescale (years), length scales (hundreds of metres) and height (metres) make sand
waves bed features to be reckoned with for activities having similar temporal and spa-
tial scales. Firstly, sand waves decrease the least navigable depths and pose a threat
to navigation routes and access channels. Furthermore, due to sand wave migration,
pipelines and cables may become exposed, which can result in free spans. These free
spans may cause the pipeline to buckle or break. Moreover, the exposed pipelines
and cables can be damaged by anchors and fishing nets. In addition, exposed objects
may be covered by a sand wave, making it difficult to locate them. Lastly, continu-
ous monitoring and, if necessary interventions such as dredging or rock dumping are
required to avoid unsafe situations, which are costly operations.

”What processes can cause sand waves to migrate?”

A steady current (here investigated by a pressure gradient and/or a wind stress at
the sea surface) inducing an asymmetry in the basic state can cause migration of sand
waves. The orders of magnitude for the migration rates and wavelengths found with
the models developed here, are in agreement with values reported in the literature
and an investigated data set along a pipeline in the North Sea.

”Can the processes determining the initial sand wave formation be simulated by a
numerical model?”

The numerical simulation model developed in this thesis is able to simulate the pro-
cesses which are assumed to be responsible for the initial formation of offshore sand
waves. It was validated mathematically against the results of a stability analysis.
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”What processes are responsible for the stabilisation of sand wave evolution?”

The offshore sand waves investigated here saturate at a height of 10-30% of the water
depth. They form over decades, starting from a perturbation which is small compared
to the water depth. The stabilising mechanism that leads to saturation is the princi-
ple that sediment is transported more easily downhill than uphill. For the saturated
sand wave, we still see a net flux of water oriented upwards towards the crest in case
of periodic water motion, as we do for an infinitely small sand wave.

The sediment characteristics partly determine the shape of the sand waves. We find
sand waves with a smooth almost sinusoidal shape, or a sharp crest together with an
elongated trough.

For unidirectional flows, asymmetric bed forms are found of which the entire evo-
lutionary process for moderate flow conditions can be described with the developed
simulation model. For more energetic flow conditions, this is not possible, since the
sand waves become too asymmetric and give rise to flow separation downstream of
the crest.

”How do the migration rates and shape of a sand wave change in the intermediate
term?”

The migration rate of a sand wave decreases slightly during its evolution. The mi-
gration rate of a fully-grown sand wave is about 18% less than of an infinitely small
sand wave. This allows us to use the results from the stability analysis in Chapter 3
as an estimate of the migration rate of a fully-developed sand wave.

Furthermore, sand waves are able to recover after they have been dredged. The time-
scale and resulting maximum height depend on how much sand is dredged and where
it is dumped.

”What data do we need to validate and apply the developed models in reality?”

Information is required on the sediment characteristics to determine the values of
the input parameters for the sediment transport formulation. Furthermore, a depth-
averaged estimate of the non-periodic component of the water motion is necessary
to estimate sand wave migration rates. Moreover, to describe the finite amplitude
behaviour of sand waves using the present model, we need actual velocity profiles to
determine the input values for the resistance at the seabed and the eddy viscosity.
This will enable us to describe the shear stresses at the seabed as accurately as pos-
sible.
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Recommendations

Future research on the following subject matters is recommended.

7.1 Data and validation

7.1.1 Migrating sand waves

We are interested in bathymetric data sets with a total span of several years and in-
tervals of about one year, to validate the models with respect to sand wave migration.
These data sets should contain sand waves which are modified as little as possible by
human intervention. Furthermore, the horizontal accuracy should be larger than the
assumed migrated distance of the sand waves over the time span of the data set.

These data sets can be used to perform case studies with the developed models,
giving insight in what knowledge is missing further. An example of such a case study
is Morelissen et al. [2002]. Here, we applied a data assimilation technique, combined
with a Landau equation, on a pipeline study. This work can now be extended by
using the stability analysis and simulation model (see also paragraph 3.9).

7.1.2 Sand wave evolution

To validate sand wave evolution as calculated by the numerical simulation model, we
need morphological data over several years, after a sand wave or a field of sand waves
has been dredged. Together with information on the water motion in the area under
investigation, this will enable use to validate the evolutionary processes found with
the simulation model. This information is not available at this moment. Here, the
vertical accuracy of the position of the seabed is important.

Further morphological data surrounding offshore interventions, changing the sed-
iment supply in an area containing fully-developed sand waves, is interesting. This
data can be used to investigate the influence of sediment availability and changes in
water motion on the behaviour of fully-developed sand waves and validate the ex-
isting models further. An example of such an intervention is an offshore island or a
large-scale sand extraction pit.
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7.2 Calculation time and use

Numerical codes are more useful when the necessary calculation time is shorter. They
then allow a wider range of parameters to be explored, increasing the confidence and
helping the interpretation of the results. This can be achieved by omitting the free
surface, which increases the numerical efficiency, since only one time-varying wall (the
seabed) remains. Furthermore, the efficiency of the spatial approximation method can
be increased by incorporating splines. These should increase the accuracy near the
boundaries of the domain, thus requiring less grid points (resulting in less calculation
time) for equal numerical accuracy.

Moreover, the results from the models can be translated to models like the Landau
equation (See [Schielen et al., 1993], [Knaapen and Hulscher, 2002] and [Morelissen
et al., 2002]), which are from a computational point of view less requiring. The
coefficients of the Landau equation, which now need to be calibrated based on data sets
gathered over several years, can after validation of the current models be determined
with other models. Solving this Landau equation is relatively fast, which increases
the possibilities of using the information while developing management strategies.

7.3 Stochastic variations and reality

The present deterministic model approach means that we have to drastically schema-
tise the environment. The actual natural variations in water motion and seabed
composition are only taken into account to a certain extent. Therefore, the represen-
tativeness of the results for real life situations is not straightforward [De Vriend, 1987].
Furthermore, legislation and management strategies are more easily formulated based
on stochastic terms. Therefore, it is necessary to implement stochastic variations in
the model. These variations can be caused by, for example, random variations in
the tidal movement or water motion in general due to e.g. storms and variations in
sediment characteristics. Furthermore, on top of sand waves smaller bed forms are
assumed to be the cause of the differential movement of the sand waves along the
crests. The implementation of stochastic variations will increase the usability of the
model and give new insight into the natural variations of the seabed position.

7.4 Sediment grain size

In general, the sediment found in the troughs is slightly finer than that found on
the crests of sand waves. This is attributed to the reduction of flow velocity in the
troughs and increase near the crests. Both wind waves (in shallower parts) and the
larger current velocities will wash away the finer sediments from the top, leaving the
coarser sediment behind. Insight into the impact of the sediment characteristics on
the value of the slope term will add to the understanding of the stabilising mechanism.
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Moreover, insight into this sorting process enables a more efficient mining strategy,
when requirements to the type of sediment to be mined exist.

7.5 Additional processes

Lastly, several physical processes can be implemented or refined in the simulation
model. They can increase the insight into the behaviour of sand waves and increase
the predictive capabilities of the model. Furthermore, it is possible they are necessary
to investigate a practical problem having special characteristics with respect to the
environment containing the sand waves. An interesting example is the inclusion of
a rocky layer. During the evolution of a sand wave in a sandy bed, it can cut into
different bed layers, encountering rocky layers. Incorporation of this rocky bed can
give insight in how this rocky bed influences the morphology on top of it, given the
sediment available (see Aliotta and Perillo [1987]). Other examples of processes are
suspended sediment transport, the critical shear stress to bring sediment in motion,
the effect of wind waves on the sediment transport and the effect of ripples and mega-
ripples on top of sand waves.
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Nomenclature

∗ meaning the parameter is dimensionless
∧ meaning a cluster of different parameters, used to analyse the

dimensionless system
2DV two dimensions: one horizontal and one vertical
A matrix on left hand side containing the time dependent terms

of the system in the simulation model
Als variable used in least square method
Av kinematic eddy viscosity [m2 s−1]
a0 function incorporating the vertical structure of the non-periodic

component of the solution of the horizontal velocity in the sta-
bility analysis

[−]

as, ac functions incorporating the vertical structure of the periodic
components of the solution of the horizontal velocity in the sta-
bility analysis

[−]

b power of transport in the sediment transport formula [−]
Bls variable used in least square method
c propagation velocity of a wave in shallow water [m s−1]
c0 function incorporating the vertical structure of the non-periodic

component of the solution of the vertical velocity in the stability
analysis

[−]

cs, cc functions incorporating the vertical structure of the periodic
components of the solution of the vertical velocity in the stabil-
ity analysis

[−]

cj weights for approximation methods [−]
d mean grain size diameter [m]
d0 function incorporating the position of the water level of the non-

periodic component of the solution in the stability analysis
[−]

ds, dc functions incorporating the position of the water level of the
periodic components of the solution in the stability analysis

[−]

D11 first derivative matrix in the horizontal direction [−]
D13 first derivative matrix in the vertical direction [−]
D21 second derivative matrix in the horizontal direction [−]
D23 second derivative matrix in the vertical direction [−]
Dij derivative matrix containing elements (i, j) [−]
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Nomenclature 137

Ev measure of influence of the viscosity on the water motion [−]
fj function value at a grid point
FGM fastest growing mode according to a linear analysis
g gravitational acceleration [m s−2]
h position of the seabed with respect to the average water depth [m]
hsw sand wave height based on data [m]
H average water depth [m]
INf interpolation polynomial
k wave number sand wave [−]
Kj cardinal polynomial
�m morphological length scale [m]
L wavelength tidal motion [m]
Lsw sand wave length [m]
M0 steady part in water motion
M2 sinusoidal tidal motion (primary lunar constituent)
N1 number of intervals in the horizontal direction [−]
N3 number of intervals in the vertical direction [−]
Nsw number of sand waves in the calculation domain [−]
P cluster of parameters used to make the pressure gradient dimen-

sionless
[−]

r right-hand side containing the time independent terms of the
system in the simulation model

R function of the square root of the Reynolds number [−]
s relative density of sediment [−]
S resistance parameter [m s−1]
Sb volumetric bedload transport [kg m−2]
t time [s]
Tlong long slow timescale used to define morphological timescale [s]
Tm morphological timescale [s]
Tp Chebyshev polynomials
u velocity in the horizontal direction [m s−1]
ur steady current in the horizontal direction [m s−1]
U maximum depth-averaged flow velocity [m s−1]
Vsw migration rate sand wave [m s−1]
w velocity in the vertical direction [m s−1]
x horizontal coordinate [m]
xl grid points [m]
Y the solution vector of the simulation model (u,w, ζ, h)
z vertical coordinate [m]
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Nomenclature 139

α proportionality constant in the sediment transport formula [s m−2]
β to vary the ratio of the steady part and the periodic part, in

such a way that the maximum velocity always coincides with
the velocity used to scale the system

[−]

γ takes into account that during a tidal cycle sediment is not trans-
ported when the critical shear stress is too low

[−]

δ stokes layer thickness [m]
ε ratio sand wave amplitude to average water depth [−]
ζ position water surface [m]
Θ critical Shields parameter [−]
λ combined bed slope factor used when investigating infinitely

small sand waves
[m2 s−2]

λ1 bed slope factor in bed slope term independent of shear stress
at the seabed

[m2 s−2]

λ2 bed slope factor in bed slope term depending on shear stress at
the seabed

[−]

ξ1 horizontal grid points in computational space [−]
ξ3 vertical grid points in computational space [−]
ρ density of water [kg m−3]
σ tidal frequency [s−1]
τb shear stress at the seabed [m2 s−2]
τw wind induced shear stress at the sea surface [m2 s−2]
φs friction angle of sediment [◦]
ϕ phase shift as solution from the least square method [−]
ψ solution vector of the stability analysis (u,w, ζ, h)
ω dimensionless complex growth rate of an infinitely small pertur-

bation
[−]

ωr real part dimensionless complex growth rate, depicting the di-
mensionless growth rate of an infinitely small perturbation

[−]

ωi imaginary part dimensionless complex growth rate, depicting
the angular frequency of an infinitely small perturbation

[−]

ωj weight functions for approximation methods
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